PTHREAD_MUTEXATTR_SETROBUSTLinux Programmer's MaPTHREAD_MUTEXATTR_SETROBUST(3)
NAME
pthread_mutexattr_getrobust, pthread_mutexattr_setrobust - get and set
the robustness attribute of a mutex attributes object
SYNOPSIS
#include <pthread.h>
int pthread_mutexattr_getrobust(const pthread_mutexattr_t *attr,
int *robustness);
int pthread_mutexattr_setrobust(const pthread_mutexattr_t *attr,
int robustness);
Compile and link with -pthread.
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
pthread_mutexattr_getrobust(), pthread_mutexattr_setrobust():
_POSIX_C_SOURCE >= 200809L
DESCRIPTION
The pthread_mutexattr_getrobust() function places the value of the
robustness attribute of the mutex attributes object referred to by attr
in *robustness. The pthread_mutexattr_setrobust() function sets the
value of the robustness attribute of the mutex attributes object
referred to by attr to the value specified in *robustness.
The robustness attribute specifies the behavior of the mutex when the
owning thread dies without unlocking the mutex. The following values
are valid for robustness:
PTHREAD_MUTEX_STALLED
This is the default value for a mutex attributes object. If a
mutex is initialized with the PTHREAD_MUTEX_STALLED attribute
and its owner dies without unlocking it, the mutex remains
locked afterwards and any future attempts to call
pthread_mutex_lock(3) on the mutex will block indefinitely.
PTHREAD_MUTEX_ROBUST
If a mutex is initialized with the PTHREAD_MUTEX_ROBUST
attribute and its owner dies without unlocking it, any future
attempts to call pthread_mutex_lock(3) on this mutex will suc-
ceed and return EOWNERDEAD to indicate that the original owner
no longer exists and the mutex is in an inconsistent state.
Usually after EOWNERDEAD is returned, the next owner should call
pthread_mutex_consistent(3) on the acquired mutex to make it
consistent again before using it any further.
If the next owner unlocks the mutex using
pthread_mutex_unlock(3) before making it consistent, the mutex
will be permanently unusable and any subsequent attempts to lock
it using pthread_mutex_lock(3) will fail with the error ENOTRE-
COVERABLE. The only permitted operation on such a mutex is
pthread_mutex_destroy(3).
If the next owner terminates before calling pthread_mutex_con-
sistent(3), further pthread_mutex_lock(3) operations on this
mutex will still return EOWNERDEAD.
Note that the attr argument of pthread_mutexattr_getrobust() and
pthread_mutexattr_setrobust() should refer to a mutex attributes object
that was initialized by pthread_mutexattr_init(3), otherwise the behav-
ior is undefined.
RETURN VALUE
On success, these functions return 0. On error, they return a positive
error number.
In the glibc implementation, pthread_mutexattr_getrobust() always
return zero.
ERRORS
EINVAL A value other than PTHREAD_MUTEX_STALLED or PTHREAD_MUTEX_ROBUST
was passed to pthread_mutexattr_setrobust().
VERSIONS
pthread_mutexattr_getrobust() and pthread_mutexattr_setrobust() were
added to glibc in version 2.12.
CONFORMING TO
POSIX.1-2008.
NOTES
In the Linux implementation, when using process-shared robust mutexes,
a waiting thread also receives the EOWNERDEAD notification if the owner
of a robust mutex performs an execve(2) without first unlocking the
mutex. POSIX.1 does not specify this detail, but the same behavior
also occurs in at least some other implementations.
Before the addition of pthread_mutexattr_getrobust() and pthread_mutex-
attr_setrobust() to POSIX, glibc defined the following equivalent non-
standard functions if _GNU_SOURCE was defined:
int pthread_mutexattr_getrobust_np(const pthread_mutexattr_t *attr,
int *robustness);
int pthread_mutexattr_setrobust_np(const pthread_mutexattr_t *attr,
int robustness);
Correspondingly, the constants PTHREAD_MUTEX_STALLED_NP and
PTHREAD_MUTEX_ROBUST_NP were also defined.
These GNU-specific APIs, which first appeared in glibc 2.4, are nowa-
days obsolete and should not be used in new programs.
EXAMPLE
The program below demonstrates the use of the robustness attribute of a
mutex attributes object. In this program, a thread holding the mutex
dies prematurely without unlocking the mutex. The main thread subse-
quently acquires the mutex successfully and gets the error EOWNERDEAD,
after which it makes the mutex consistent.
The following shell session shows what we see when running this pro-
gram:
$ ./a.out
[original owner] Setting lock...
[original owner] Locked. Now exiting without unlocking.
[main thread] Attempting to lock the robust mutex.
[main thread] pthread_mutex_lock() returned EOWNERDEAD
[main thread] Now make the mutex consistent
[main thread] Mutex is now consistent; unlocking
Program source
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include <errno.h>
#define handle_error_en(en, msg) \
do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)
static pthread_mutex_t mtx;
static void *
original_owner_thread(void *ptr)
{
printf("[original owner] Setting lock...\n");
pthread_mutex_lock(&mtx);
printf("[original owner] Locked. Now exiting without unlocking.\n");
pthread_exit(NULL);
}
int
main(int argc, char *argv[])
{
pthread_t thr;
pthread_mutexattr_t attr;
int s;
pthread_mutexattr_init(&attr);
/* initialize the attributes object */
pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST);
/* set robustness */
pthread_mutex_init(&mtx, &attr); /* initialize the mutex */
pthread_create(&thr, NULL, original_owner_thread, NULL);
sleep(2);
/* "original_owner_thread" should have exited by now */
printf("[main thread] Attempting to lock the robust mutex.\n");
s = pthread_mutex_lock(&mtx);
if (s == EOWNERDEAD) {
printf("[main thread] pthread_mutex_lock() returned EOWNERDEAD\n");
printf("[main thread] Now make the mutex consistent\n");
s = pthread_mutex_consistent(&mtx);
if (s != 0)
handle_error_en(s, "pthread_mutex_consistent");
printf("[main thread] Mutex is now consistent; unlocking\n");
s = pthread_mutex_unlock(&mtx);
if (s != 0)
handle_error_en(s, "pthread_mutex_unlock");
exit(EXIT_SUCCESS);
} else if (s == 0) {
printf("[main thread] pthread_mutex_lock() unexpectedly succeeded\n");
exit(EXIT_FAILURE);
} else {
printf("[main thread] pthread_mutex_lock() unexpectedly failed\n");
handle_error_en(s, "pthread_mutex_lock");
}
}
SEE ALSO
get_robust_list(2), set_robust_list(2), pthread_mutex_init(3),
pthread_mutex_consistent(3), pthread_mutex_lock(3), pthreads(7)
COLOPHON
This page is part of release 4.15 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.
Linux 2017-08-20 PTHREAD_MUTEXATTR_SETROBUST(3)