PERLFAQ7(1) Perl Programmers Reference Guide PERLFAQ7(1)
NAME
perlfaq7 - General Perl Language Issues
DESCRIPTION
This section deals with general Perl language issues that don't clearly
fit into any of the other sections.
Can I get a BNF/yacc/RE for the Perl language?
There is no BNF, but you can paw your way through the yacc grammar in
perly.y in the source distribution if you're particularly brave. The
grammar relies on very smart tokenizing code, so be prepared to venture
into toke.c as well.
In the words of Chaim Frenkel: "Perl's grammar can not be reduced to
BNF. The work of parsing perl is distributed between yacc, the lexer,
smoke and mirrors."
What are all these $@%&* punctuation signs, and how do I know when to use
them?
They are type specifiers, as detailed in perldata:
$ for scalar values (number, string or reference)
@ for arrays
% for hashes (associative arrays)
& for subroutines (aka functions, procedures, methods)
* for all types of that symbol name. In version 4 you used them like
pointers, but in modern perls you can just use references.
There are a couple of other symbols that you're likely to encounter
that aren't really type specifiers:
<> are used for inputting a record from a filehandle.
\ takes a reference to something.
Note that <FILE> is neither the type specifier for files nor the name
of the handle. It is the "<>" operator applied to the handle FILE. It
reads one line (well, record--see "$/" in perlvar) from the handle FILE
in scalar context, or all lines in list context. When performing open,
close, or any other operation besides "<>" on files, or even when
talking about the handle, do not use the brackets. These are correct:
"eof(FH)", "seek(FH, 0, 2)" and "copying from STDIN to FILE".
Do I always/never have to quote my strings or use semicolons and commas?
Normally, a bareword doesn't need to be quoted, but in most cases
probably should be (and must be under "use strict"). But a hash key
consisting of a simple word and the left-hand operand to the "=>"
operator both count as though they were quoted:
This is like this
------------ ---------------
$foo{line} $foo{'line'}
bar => stuff 'bar' => stuff
The final semicolon in a block is optional, as is the final comma in a
list. Good style (see perlstyle) says to put them in except for one-
liners:
if ($whoops) { exit 1 }
my @nums = (1, 2, 3);
if ($whoops) {
exit 1;
}
my @lines = (
"There Beren came from mountains cold",
"And lost he wandered under leaves",
);
How do I skip some return values?
One way is to treat the return values as a list and index into it:
$dir = (getpwnam($user))[7];
Another way is to use undef as an element on the left-hand-side:
($dev, $ino, undef, undef, $uid, $gid) = stat($file);
You can also use a list slice to select only the elements that you
need:
($dev, $ino, $uid, $gid) = ( stat($file) )[0,1,4,5];
How do I temporarily block warnings?
If you are running Perl 5.6.0 or better, the "use warnings" pragma
allows fine control of what warnings are produced. See perllexwarn for
more details.
{
no warnings; # temporarily turn off warnings
$x = $y + $z; # I know these might be undef
}
Additionally, you can enable and disable categories of warnings. You
turn off the categories you want to ignore and you can still get other
categories of warnings. See perllexwarn for the complete details,
including the category names and hierarchy.
{
no warnings 'uninitialized';
$x = $y + $z;
}
If you have an older version of Perl, the $^W variable (documented in
perlvar) controls runtime warnings for a block:
{
local $^W = 0; # temporarily turn off warnings
$x = $y + $z; # I know these might be undef
}
Note that like all the punctuation variables, you cannot currently use
my() on $^W, only local().
What's an extension?
An extension is a way of calling compiled C code from Perl. Reading
perlxstut is a good place to learn more about extensions.
Why do Perl operators have different precedence than C operators?
Actually, they don't. All C operators that Perl copies have the same
precedence in Perl as they do in C. The problem is with operators that
C doesn't have, especially functions that give a list context to
everything on their right, eg. print, chmod, exec, and so on. Such
functions are called "list operators" and appear as such in the
precedence table in perlop.
A common mistake is to write:
unlink $file || die "snafu";
This gets interpreted as:
unlink ($file || die "snafu");
To avoid this problem, either put in extra parentheses or use the super
low precedence "or" operator:
(unlink $file) || die "snafu";
unlink $file or die "snafu";
The "English" operators ("and", "or", "xor", and "not") deliberately
have precedence lower than that of list operators for just such
situations as the one above.
Another operator with surprising precedence is exponentiation. It binds
more tightly even than unary minus, making "-2**2" produce a negative
four and not a positive one. It is also right-associating, meaning that
"2**3**2" is two raised to the ninth power, not eight squared.
Although it has the same precedence as in C, Perl's "?:" operator
produces an lvalue. This assigns $x to either $if_true or $if_false,
depending on the trueness of $maybe:
($maybe ? $if_true : $if_false) = $x;
How do I declare/create a structure?
In general, you don't "declare" a structure. Just use a (probably
anonymous) hash reference. See perlref and perldsc for details. Here's
an example:
$person = {}; # new anonymous hash
$person->{AGE} = 24; # set field AGE to 24
$person->{NAME} = "Nat"; # set field NAME to "Nat"
If you're looking for something a bit more rigorous, try perltoot.
How do I create a module?
perlnewmod is a good place to start, ignore the bits about uploading to
CPAN if you don't want to make your module publicly available.
ExtUtils::ModuleMaker and Module::Starter are also good places to
start. Many CPAN authors now use Dist::Zilla to automate as much as
possible.
Detailed documentation about modules can be found at: perlmod,
perlmodlib, perlmodstyle.
If you need to include C code or C library interfaces use h2xs. h2xs
will create the module distribution structure and the initial interface
files. perlxs and perlxstut explain the details.
How do I adopt or take over a module already on CPAN?
Ask the current maintainer to make you a co-maintainer or transfer the
module to you.
If you can not reach the author for some reason contact the PAUSE
admins at modules AT perl.org who may be able to help, but each case it
treated seperatly.
o Get a login for the Perl Authors Upload Server (PAUSE) if you don't
already have one: <http://pause.perl.org>
o Write to modules AT perl.org explaining what you did to contact the
current maintainer. The PAUSE admins will also try to reach the
maintainer.
o Post a public message in a heavily trafficked site announcing your
intention to take over the module.
o Wait a bit. The PAUSE admins don't want to act too quickly in case
the current maintainer is on holiday. If there's no response to
private communication or the public post, a PAUSE admin can
transfer it to you.
How do I create a class?
(contributed by brian d foy)
In Perl, a class is just a package, and methods are just subroutines.
Perl doesn't get more formal than that and lets you set up the package
just the way that you like it (that is, it doesn't set up anything for
you).
The Perl documentation has several tutorials that cover class creation,
including perlboot (Barnyard Object Oriented Tutorial), perltoot (Tom's
Object Oriented Tutorial), perlbot (Bag o' Object Tricks), and perlobj.
How can I tell if a variable is tainted?
You can use the tainted() function of the Scalar::Util module,
available from CPAN (or included with Perl since release 5.8.0). See
also "Laundering and Detecting Tainted Data" in perlsec.
What's a closure?
Closures are documented in perlref.
Closure is a computer science term with a precise but hard-to-explain
meaning. Usually, closures are implemented in Perl as anonymous
subroutines with lasting references to lexical variables outside their
own scopes. These lexicals magically refer to the variables that were
around when the subroutine was defined (deep binding).
Closures are most often used in programming languages where you can
have the return value of a function be itself a function, as you can in
Perl. Note that some languages provide anonymous functions but are not
capable of providing proper closures: the Python language, for example.
For more information on closures, check out any textbook on functional
programming. Scheme is a language that not only supports but encourages
closures.
Here's a classic non-closure function-generating function:
sub add_function_generator {
return sub { shift() + shift() };
}
my $add_sub = add_function_generator();
my $sum = $add_sub->(4,5); # $sum is 9 now.
The anonymous subroutine returned by add_function_generator() isn't
technically a closure because it refers to no lexicals outside its own
scope. Using a closure gives you a function template with some
customization slots left out to be filled later.
Contrast this with the following make_adder() function, in which the
returned anonymous function contains a reference to a lexical variable
outside the scope of that function itself. Such a reference requires
that Perl return a proper closure, thus locking in for all time the
value that the lexical had when the function was created.
sub make_adder {
my $addpiece = shift;
return sub { shift() + $addpiece };
}
my $f1 = make_adder(20);
my $f2 = make_adder(555);
Now "$f1->($n)" is always 20 plus whatever $n you pass in, whereas
"$f2->($n)" is always 555 plus whatever $n you pass in. The $addpiece
in the closure sticks around.
Closures are often used for less esoteric purposes. For example, when
you want to pass in a bit of code into a function:
my $line;
timeout( 30, sub { $line = <STDIN> } );
If the code to execute had been passed in as a string, '$line =
<STDIN>', there would have been no way for the hypothetical timeout()
function to access the lexical variable $line back in its caller's
scope.
Another use for a closure is to make a variable private to a named
subroutine, e.g. a counter that gets initialized at creation time of
the sub and can only be modified from within the sub. This is
sometimes used with a BEGIN block in package files to make sure a
variable doesn't get meddled with during the lifetime of the package:
BEGIN {
my $id = 0;
sub next_id { ++$id }
}
This is discussed in more detail in perlsub; see the entry on
Persistent Private Variables.
What is variable suicide and how can I prevent it?
This problem was fixed in perl 5.004_05, so preventing it means
upgrading your version of perl. ;)
Variable suicide is when you (temporarily or permanently) lose the
value of a variable. It is caused by scoping through my() and local()
interacting with either closures or aliased foreach() iterator
variables and subroutine arguments. It used to be easy to inadvertently
lose a variable's value this way, but now it's much harder. Take this
code:
my $f = 'foo';
sub T {
while ($i++ < 3) { my $f = $f; $f .= "bar"; print $f, "\n" }
}
T;
print "Finally $f\n";
If you are experiencing variable suicide, that "my $f" in the
subroutine doesn't pick up a fresh copy of the $f whose value is 'foo'.
The output shows that inside the subroutine the value of $f leaks
through when it shouldn't, as in this output:
foobar
foobarbar
foobarbarbar
Finally foo
The $f that has "bar" added to it three times should be a new $f "my
$f" should create a new lexical variable each time through the loop.
The expected output is:
foobar
foobar
foobar
Finally foo
How can I pass/return a {Function, FileHandle, Array, Hash, Method, Regex}?
You need to pass references to these objects. See "Pass by Reference"
in perlsub for this particular question, and perlref for information on
references.
Passing Variables and Functions
Regular variables and functions are quite easy to pass: just pass
in a reference to an existing or anonymous variable or function:
func( \$some_scalar );
func( \@some_array );
func( [ 1 .. 10 ] );
func( \%some_hash );
func( { this => 10, that => 20 } );
func( \&some_func );
func( sub { $_[0] ** $_[1] } );
Passing Filehandles
As of Perl 5.6, you can represent filehandles with scalar variables
which you treat as any other scalar.
open my $fh, $filename or die "Cannot open $filename! $!";
func( $fh );
sub func {
my $passed_fh = shift;
my $line = <$passed_fh>;
}
Before Perl 5.6, you had to use the *FH or "\*FH" notations. These
are "typeglobs"--see "Typeglobs and Filehandles" in perldata and
especially "Pass by Reference" in perlsub for more information.
Passing Regexes
Here's an example of how to pass in a string and a regular
expression for it to match against. You construct the pattern with
the "qr//" operator:
sub compare($$) {
my ($val1, $regex) = @_;
my $retval = $val1 =~ /$regex/;
return $retval;
}
$match = compare("old McDonald", qr/d.*D/i);
Passing Methods
To pass an object method into a subroutine, you can do this:
call_a_lot(10, $some_obj, "methname")
sub call_a_lot {
my ($count, $widget, $trick) = @_;
for (my $i = 0; $i < $count; $i++) {
$widget->$trick();
}
}
Or, you can use a closure to bundle up the object, its method call,
and arguments:
my $whatnot = sub { $some_obj->obfuscate(@args) };
func($whatnot);
sub func {
my $code = shift;
&$code();
}
You could also investigate the can() method in the UNIVERSAL class
(part of the standard perl distribution).
How do I create a static variable?
(contributed by brian d foy)
In Perl 5.10, declare the variable with "state". The "state"
declaration creates the lexical variable that persists between calls to
the subroutine:
sub counter { state $count = 1; $count++ }
You can fake a static variable by using a lexical variable which goes
out of scope. In this example, you define the subroutine "counter", and
it uses the lexical variable $count. Since you wrap this in a BEGIN
block, $count is defined at compile-time, but also goes out of scope at
the end of the BEGIN block. The BEGIN block also ensures that the
subroutine and the value it uses is defined at compile-time so the
subroutine is ready to use just like any other subroutine, and you can
put this code in the same place as other subroutines in the program
text (i.e. at the end of the code, typically). The subroutine "counter"
still has a reference to the data, and is the only way you can access
the value (and each time you do, you increment the value). The data in
chunk of memory defined by $count is private to "counter".
BEGIN {
my $count = 1;
sub counter { $count++ }
}
my $start = counter();
.... # code that calls counter();
my $end = counter();
In the previous example, you created a function-private variable
because only one function remembered its reference. You could define
multiple functions while the variable is in scope, and each function
can share the "private" variable. It's not really "static" because you
can access it outside the function while the lexical variable is in
scope, and even create references to it. In this example,
"increment_count" and "return_count" share the variable. One function
adds to the value and the other simply returns the value. They can
both access $count, and since it has gone out of scope, there is no
other way to access it.
BEGIN {
my $count = 1;
sub increment_count { $count++ }
sub return_count { $count }
}
To declare a file-private variable, you still use a lexical variable.
A file is also a scope, so a lexical variable defined in the file
cannot be seen from any other file.
See "Persistent Private Variables" in perlsub for more information.
The discussion of closures in perlref may help you even though we did
not use anonymous subroutines in this answer. See "Persistent Private
Variables" in perlsub for details.
What's the difference between dynamic and lexical (static) scoping? Between
local() and my()?
"local($x)" saves away the old value of the global variable $x and
assigns a new value for the duration of the subroutine which is visible
in other functions called from that subroutine. This is done at run-
time, so is called dynamic scoping. local() always affects global
variables, also called package variables or dynamic variables.
"my($x)" creates a new variable that is only visible in the current
subroutine. This is done at compile-time, so it is called lexical or
static scoping. my() always affects private variables, also called
lexical variables or (improperly) static(ly scoped) variables.
For instance:
sub visible {
print "var has value $var\n";
}
sub dynamic {
local $var = 'local'; # new temporary value for the still-global
visible(); # variable called $var
}
sub lexical {
my $var = 'private'; # new private variable, $var
visible(); # (invisible outside of sub scope)
}
$var = 'global';
visible(); # prints global
dynamic(); # prints local
lexical(); # prints global
Notice how at no point does the value "private" get printed. That's
because $var only has that value within the block of the lexical()
function, and it is hidden from the called subroutine.
In summary, local() doesn't make what you think of as private, local
variables. It gives a global variable a temporary value. my() is what
you're looking for if you want private variables.
See "Private Variables via my()" in perlsub and "Temporary Values via
local()" in perlsub for excruciating details.
How can I access a dynamic variable while a similarly named lexical is in
scope?
If you know your package, you can just mention it explicitly, as in
$Some_Pack::var. Note that the notation $::var is not the dynamic $var
in the current package, but rather the one in the "main" package, as
though you had written $main::var.
use vars '$var';
local $var = "global";
my $var = "lexical";
print "lexical is $var\n";
print "global is $main::var\n";
Alternatively you can use the compiler directive our() to bring a
dynamic variable into the current lexical scope.
require 5.006; # our() did not exist before 5.6
use vars '$var';
local $var = "global";
my $var = "lexical";
print "lexical is $var\n";
{
our $var;
print "global is $var\n";
}
What's the difference between deep and shallow binding?
In deep binding, lexical variables mentioned in anonymous subroutines
are the same ones that were in scope when the subroutine was created.
In shallow binding, they are whichever variables with the same names
happen to be in scope when the subroutine is called. Perl always uses
deep binding of lexical variables (i.e., those created with my()).
However, dynamic variables (aka global, local, or package variables)
are effectively shallowly bound. Consider this just one more reason not
to use them. See the answer to "What's a closure?".
Why doesn't "my($foo) = <$fh>;" work right?
"my()" and "local()" give list context to the right hand side of "=".
The <$fh> read operation, like so many of Perl's functions and
operators, can tell which context it was called in and behaves
appropriately. In general, the scalar() function can help. This
function does nothing to the data itself (contrary to popular myth) but
rather tells its argument to behave in whatever its scalar fashion is.
If that function doesn't have a defined scalar behavior, this of course
doesn't help you (such as with sort()).
To enforce scalar context in this particular case, however, you need
merely omit the parentheses:
local($foo) = <$fh>; # WRONG
local($foo) = scalar(<$fh>); # ok
local $foo = <$fh>; # right
You should probably be using lexical variables anyway, although the
issue is the same here:
my($foo) = <$fh>; # WRONG
my $foo = <$fh>; # right
How do I redefine a builtin function, operator, or method?
Why do you want to do that? :-)
If you want to override a predefined function, such as open(), then
you'll have to import the new definition from a different module. See
"Overriding Built-in Functions" in perlsub.
If you want to overload a Perl operator, such as "+" or "**", then
you'll want to use the "use overload" pragma, documented in overload.
If you're talking about obscuring method calls in parent classes, see
"Overridden Methods" in perltoot.
What's the difference between calling a function as &foo and foo()?
(contributed by brian d foy)
Calling a subroutine as &foo with no trailing parentheses ignores the
prototype of "foo" and passes it the current value of the argument
list, @_. Here's an example; the "bar" subroutine calls &foo, which
prints its arguments list:
sub bar { &foo }
sub foo { print "Args in foo are: @_\n" }
bar( qw( a b c ) );
When you call "bar" with arguments, you see that "foo" got the same @_:
Args in foo are: a b c
Calling the subroutine with trailing parentheses, with or without
arguments, does not use the current @_ and respects the subroutine
prototype. Changing the example to put parentheses after the call to
"foo" changes the program:
sub bar { &foo() }
sub foo { print "Args in foo are: @_\n" }
bar( qw( a b c ) );
Now the output shows that "foo" doesn't get the @_ from its caller.
Args in foo are:
The main use of the @_ pass-through feature is to write subroutines
whose main job it is to call other subroutines for you. For further
details, see perlsub.
How do I create a switch or case statement?
In Perl 5.10, use the "given-when" construct described in perlsyn:
use 5.010;
given ( $string ) {
when( 'Fred' ) { say "I found Fred!" }
when( 'Barney' ) { say "I found Barney!" }
when( /Bamm-?Bamm/ ) { say "I found Bamm-Bamm!" }
default { say "I don't recognize the name!" }
};
If one wants to use pure Perl and to be compatible with Perl versions
prior to 5.10, the general answer is to use "if-elsif-else":
for ($variable_to_test) {
if (/pat1/) { } # do something
elsif (/pat2/) { } # do something else
elsif (/pat3/) { } # do something else
else { } # default
}
Here's a simple example of a switch based on pattern matching, lined up
in a way to make it look more like a switch statement. We'll do a
multiway conditional based on the type of reference stored in
$whatchamacallit:
SWITCH: for (ref $whatchamacallit) {
/^$/ && die "not a reference";
/SCALAR/ && do {
print_scalar($$ref);
last SWITCH;
};
/ARRAY/ && do {
print_array(@$ref);
last SWITCH;
};
/HASH/ && do {
print_hash(%$ref);
last SWITCH;
};
/CODE/ && do {
warn "can't print function ref";
last SWITCH;
};
# DEFAULT
warn "User defined type skipped";
}
See perlsyn for other examples in this style.
Sometimes you should change the positions of the constant and the
variable. For example, let's say you wanted to test which of many
answers you were given, but in a case-insensitive way that also allows
abbreviations. You can use the following technique if the strings all
start with different characters or if you want to arrange the matches
so that one takes precedence over another, as "SEND" has precedence
over "STOP" here:
chomp($answer = <>);
if ("SEND" =~ /^\Q$answer/i) { print "Action is send\n" }
elsif ("STOP" =~ /^\Q$answer/i) { print "Action is stop\n" }
elsif ("ABORT" =~ /^\Q$answer/i) { print "Action is abort\n" }
elsif ("LIST" =~ /^\Q$answer/i) { print "Action is list\n" }
elsif ("EDIT" =~ /^\Q$answer/i) { print "Action is edit\n" }
A totally different approach is to create a hash of function
references.
my %commands = (
"happy" => \&joy,
"sad", => \&sullen,
"done" => sub { die "See ya!" },
"mad" => \&angry,
);
print "How are you? ";
chomp($string = <STDIN>);
if ($commands{$string}) {
$commands{$string}->();
} else {
print "No such command: $string\n";
}
Starting from Perl 5.8, a source filter module, "Switch", can also be
used to get switch and case. Its use is now discouraged, because it's
not fully compatible with the native switch of Perl 5.10, and because,
as it's implemented as a source filter, it doesn't always work as
intended when complex syntax is involved.
How can I catch accesses to undefined variables, functions, or methods?
The AUTOLOAD method, discussed in "Autoloading" in perlsub and
"AUTOLOAD: Proxy Methods" in perltoot, lets you capture calls to
undefined functions and methods.
When it comes to undefined variables that would trigger a warning under
"use warnings", you can promote the warning to an error.
use warnings FATAL => qw(uninitialized);
Why can't a method included in this same file be found?
Some possible reasons: your inheritance is getting confused, you've
misspelled the method name, or the object is of the wrong type. Check
out perltoot for details about any of the above cases. You may also use
"print ref($object)" to find out the class $object was blessed into.
Another possible reason for problems is that you've used the indirect
object syntax (eg, "find Guru "Samy"") on a class name before Perl has
seen that such a package exists. It's wisest to make sure your packages
are all defined before you start using them, which will be taken care
of if you use the "use" statement instead of "require". If not, make
sure to use arrow notation (eg., "Guru->find("Samy")") instead. Object
notation is explained in perlobj.
Make sure to read about creating modules in perlmod and the perils of
indirect objects in "Method Invocation" in perlobj.
How can I find out my current or calling package?
(contributed by brian d foy)
To find the package you are currently in, use the special literal
"__PACKAGE__", as documented in perldata. You can only use the special
literals as separate tokens, so you can't interpolate them into strings
like you can with variables:
my $current_package = __PACKAGE__;
print "I am in package $current_package\n";
If you want to find the package calling your code, perhaps to give
better diagnostics as Carp does, use the "caller" built-in:
sub foo {
my @args = ...;
my( $package, $filename, $line ) = caller;
print "I was called from package $package\n";
);
By default, your program starts in package "main", so you will always
be in some package.
This is different from finding out the package an object is blessed
into, which might not be the current package. For that, use "blessed"
from Scalar::Util, part of the Standard Library since Perl 5.8:
use Scalar::Util qw(blessed);
my $object_package = blessed( $object );
Most of the time, you shouldn't care what package an object is blessed
into, however, as long as it claims to inherit from that class:
my $is_right_class = eval { $object->isa( $package ) }; # true or false
And, with Perl 5.10 and later, you don't have to check for an
inheritance to see if the object can handle a role. For that, you can
use "DOES", which comes from "UNIVERSAL":
my $class_does_it = eval { $object->DOES( $role ) }; # true or false
You can safely replace "isa" with "DOES" (although the converse is not
true).
How can I comment out a large block of Perl code?
(contributed by brian d foy)
The quick-and-dirty way to comment out more than one line of Perl is to
surround those lines with Pod directives. You have to put these
directives at the beginning of the line and somewhere where Perl
expects a new statement (so not in the middle of statements like the
"#" comments). You end the comment with "=cut", ending the Pod section:
=pod
my $object = NotGonnaHappen->new();
ignored_sub();
$wont_be_assigned = 37;
=cut
The quick-and-dirty method only works well when you don't plan to leave
the commented code in the source. If a Pod parser comes along, you're
multiline comment is going to show up in the Pod translation. A better
way hides it from Pod parsers as well.
The "=begin" directive can mark a section for a particular purpose. If
the Pod parser doesn't want to handle it, it just ignores it. Label the
comments with "comment". End the comment using "=end" with the same
label. You still need the "=cut" to go back to Perl code from the Pod
comment:
=begin comment
my $object = NotGonnaHappen->new();
ignored_sub();
$wont_be_assigned = 37;
=end comment
=cut
For more information on Pod, check out perlpod and perlpodspec.
How do I clear a package?
Use this code, provided by Mark-Jason Dominus:
sub scrub_package {
no strict 'refs';
my $pack = shift;
die "Shouldn't delete main package"
if $pack eq "" || $pack eq "main";
my $stash = *{$pack . '::'}{HASH};
my $name;
foreach $name (keys %$stash) {
my $fullname = $pack . '::' . $name;
# Get rid of everything with that name.
undef $$fullname;
undef @$fullname;
undef %$fullname;
undef &$fullname;
undef *$fullname;
}
}
Or, if you're using a recent release of Perl, you can just use the
Symbol::delete_package() function instead.
How can I use a variable as a variable name?
Beginners often think they want to have a variable contain the name of
a variable.
$fred = 23;
$varname = "fred";
++$$varname; # $fred now 24
This works sometimes, but it is a very bad idea for two reasons.
The first reason is that this technique only works on global variables.
That means that if $fred is a lexical variable created with my() in the
above example, the code wouldn't work at all: you'd accidentally access
the global and skip right over the private lexical altogether. Global
variables are bad because they can easily collide accidentally and in
general make for non-scalable and confusing code.
Symbolic references are forbidden under the "use strict" pragma. They
are not true references and consequently are not reference-counted or
garbage-collected.
The other reason why using a variable to hold the name of another
variable is a bad idea is that the question often stems from a lack of
understanding of Perl data structures, particularly hashes. By using
symbolic references, you are just using the package's symbol-table hash
(like %main::) instead of a user-defined hash. The solution is to use
your own hash or a real reference instead.
$USER_VARS{"fred"} = 23;
my $varname = "fred";
$USER_VARS{$varname}++; # not $$varname++
There we're using the %USER_VARS hash instead of symbolic references.
Sometimes this comes up in reading strings from the user with variable
references and wanting to expand them to the values of your perl
program's variables. This is also a bad idea because it conflates the
program-addressable namespace and the user-addressable one. Instead of
reading a string and expanding it to the actual contents of your
program's own variables:
$str = 'this has a $fred and $barney in it';
$str =~ s/(\$\w+)/$1/eeg; # need double eval
it would be better to keep a hash around like %USER_VARS and have
variable references actually refer to entries in that hash:
$str =~ s/\$(\w+)/$USER_VARS{$1}/g; # no /e here at all
That's faster, cleaner, and safer than the previous approach. Of
course, you don't need to use a dollar sign. You could use your own
scheme to make it less confusing, like bracketed percent symbols, etc.
$str = 'this has a %fred% and %barney% in it';
$str =~ s/%(\w+)%/$USER_VARS{$1}/g; # no /e here at all
Another reason that folks sometimes think they want a variable to
contain the name of a variable is that they don't know how to build
proper data structures using hashes. For example, let's say they wanted
two hashes in their program: %fred and %barney, and that they wanted to
use another scalar variable to refer to those by name.
$name = "fred";
$$name{WIFE} = "wilma"; # set %fred
$name = "barney";
$$name{WIFE} = "betty"; # set %barney
This is still a symbolic reference, and is still saddled with the
problems enumerated above. It would be far better to write:
$folks{"fred"}{WIFE} = "wilma";
$folks{"barney"}{WIFE} = "betty";
And just use a multilevel hash to start with.
The only times that you absolutely must use symbolic references are
when you really must refer to the symbol table. This may be because
it's something that one can't take a real reference to, such as a
format name. Doing so may also be important for method calls, since
these always go through the symbol table for resolution.
In those cases, you would turn off "strict 'refs'" temporarily so you
can play around with the symbol table. For example:
@colors = qw(red blue green yellow orange purple violet);
for my $name (@colors) {
no strict 'refs'; # renege for the block
*$name = sub { "<FONT COLOR='$name'>@_</FONT>" };
}
All those functions (red(), blue(), green(), etc.) appear to be
separate, but the real code in the closure actually was compiled only
once.
So, sometimes you might want to use symbolic references to manipulate
the symbol table directly. This doesn't matter for formats, handles,
and subroutines, because they are always global--you can't use my() on
them. For scalars, arrays, and hashes, though--and usually for
subroutines-- you probably only want to use hard references.
What does "bad interpreter" mean?
(contributed by brian d foy)
The "bad interpreter" message comes from the shell, not perl. The
actual message may vary depending on your platform, shell, and locale
settings.
If you see "bad interpreter - no such file or directory", the first
line in your perl script (the "shebang" line) does not contain the
right path to perl (or any other program capable of running scripts).
Sometimes this happens when you move the script from one machine to
another and each machine has a different path to perl--/usr/bin/perl
versus /usr/local/bin/perl for instance. It may also indicate that the
source machine has CRLF line terminators and the destination machine
has LF only: the shell tries to find /usr/bin/perl<CR>, but can't.
If you see "bad interpreter: Permission denied", you need to make your
script executable.
In either case, you should still be able to run the scripts with perl
explicitly:
% perl script.pl
If you get a message like "perl: command not found", perl is not in
your PATH, which might also mean that the location of perl is not where
you expect it so you need to adjust your shebang line.
AUTHOR AND COPYRIGHT
Copyright (c) 1997-2010 Tom Christiansen, Nathan Torkington, and other
authors as noted. All rights reserved.
This documentation is free; you can redistribute it and/or modify it
under the same terms as Perl itself.
Irrespective of its distribution, all code examples in this file are
hereby placed into the public domain. You are permitted and encouraged
to use this code in your own programs for fun or for profit as you see
fit. A simple comment in the code giving credit would be courteous but
is not required.
perl v5.16.3 2013-03-04 PERLFAQ7(1)