perldsc(phpman.html) - phpMan

PERLDSC(1)             Perl Programmers Reference Guide             PERLDSC(1)
NAME
       perldsc - Perl Data Structures Cookbook
DESCRIPTION
       Perl lets us have complex data structures.  You can write something
       like this and all of a sudden, you'd have an array with three
       dimensions!
           for my $x (1 .. 10) {
               for my $y (1 .. 10) {
                   for my $z (1 .. 10) {
                       $AoA[$x][$y][$z] =
                           $x ** $y + $z;
                   }
               }
           }
       Alas, however simple this may appear, underneath it's a much more
       elaborate construct than meets the eye!
       How do you print it out?  Why can't you say just "print @AoA"?  How do
       you sort it?  How can you pass it to a function or get one of these
       back from a function?  Is it an object?  Can you save it to disk to
       read back later?  How do you access whole rows or columns of that
       matrix?  Do all the values have to be numeric?
       As you see, it's quite easy to become confused.  While some small
       portion of the blame for this can be attributed to the reference-based
       implementation, it's really more due to a lack of existing
       documentation with examples designed for the beginner.
       This document is meant to be a detailed but understandable treatment of
       the many different sorts of data structures you might want to develop.
       It should also serve as a cookbook of examples.  That way, when you
       need to create one of these complex data structures, you can just
       pinch, pilfer, or purloin a drop-in example from here.
       Let's look at each of these possible constructs in detail.  There are
       separate sections on each of the following:
       o    arrays of arrays
       o    hashes of arrays
       o    arrays of hashes
       o    hashes of hashes
       o    more elaborate constructs
       But for now, let's look at general issues common to all these types of
       data structures.
REFERENCES
       The most important thing to understand about all data structures in
       Perl--including multidimensional arrays--is that even though they might
       appear otherwise, Perl @ARRAYs and %HASHes are all internally one-
       dimensional.  They can hold only scalar values (meaning a string,
       number, or a reference).  They cannot directly contain other arrays or
       hashes, but instead contain references to other arrays or hashes.
       You can't use a reference to an array or hash in quite the same way
       that you would a real array or hash.  For C or C++ programmers unused
       to distinguishing between arrays and pointers to the same, this can be
       confusing.  If so, just think of it as the difference between a
       structure and a pointer to a structure.
       You can (and should) read more about references in perlref.  Briefly,
       references are rather like pointers that know what they point to.
       (Objects are also a kind of reference, but we won't be needing them
       right away--if ever.)  This means that when you have something which
       looks to you like an access to a two-or-more-dimensional array and/or
       hash, what's really going on is that the base type is merely a one-
       dimensional entity that contains references to the next level.  It's
       just that you can use it as though it were a two-dimensional one.  This
       is actually the way almost all C multidimensional arrays work as well.
           $array[7][12]                       # array of arrays
           $array[7]{string}                   # array of hashes
           $hash{string}[7]                    # hash of arrays
           $hash{string}{'another string'}     # hash of hashes
       Now, because the top level contains only references, if you try to
       print out your array in with a simple print() function, you'll get
       something that doesn't look very nice, like this:
           my @AoA = ( [2, 3], [4, 5, 7], [0] );
           print $AoA[1][2];
         7
           print @AoA;
         ARRAY(0x83c38)ARRAY(0x8b194)ARRAY(0x8b1d0)
       That's because Perl doesn't (ever) implicitly dereference your
       variables.  If you want to get at the thing a reference is referring
       to, then you have to do this yourself using either prefix typing
       indicators, like "${$blah}", "@{$blah}", "@{$blah[$i]}", or else
       postfix pointer arrows, like "$a->[3]", "$h->{fred}", or even
       "$ob->method()->[3]".
COMMON MISTAKES
       The two most common mistakes made in constructing something like an
       array of arrays is either accidentally counting the number of elements
       or else taking a reference to the same memory location repeatedly.
       Here's the case where you just get the count instead of a nested array:
           for my $i (1..10) {
               my @array = somefunc($i);
               $AoA[$i] = @array;      # WRONG!
           }
       That's just the simple case of assigning an array to a scalar and
       getting its element count.  If that's what you really and truly want,
       then you might do well to consider being a tad more explicit about it,
       like this:
           for my $i (1..10) {
               my @array = somefunc($i);
               $counts[$i] = scalar @array;
           }
       Here's the case of taking a reference to the same memory location again
       and again:
           # Either without strict or having an outer-scope my @array;
           # declaration.
           for my $i (1..10) {
               @array = somefunc($i);
               $AoA[$i] = \@array;     # WRONG!
           }
       So, what's the big problem with that?  It looks right, doesn't it?
       After all, I just told you that you need an array of references, so by
       golly, you've made me one!
       Unfortunately, while this is true, it's still broken.  All the
       references in @AoA refer to the very same place, and they will
       therefore all hold whatever was last in @array!  It's similar to the
       problem demonstrated in the following C program:
           #include <pwd.h>
           main() {
               struct passwd *getpwnam(), *rp, *dp;
               rp = getpwnam("root");
               dp = getpwnam("daemon");
               printf("daemon name is %s\nroot name is %s\n",
                       dp->pw_name, rp->pw_name);
           }
       Which will print
           daemon name is daemon
           root name is daemon
       The problem is that both "rp" and "dp" are pointers to the same
       location in memory!  In C, you'd have to remember to malloc() yourself
       some new memory.  In Perl, you'll want to use the array constructor
       "[]" or the hash constructor "{}" instead.   Here's the right way to do
       the preceding broken code fragments:
           # Either without strict or having an outer-scope my @array;
           # declaration.
           for my $i (1..10) {
               @array = somefunc($i);
               $AoA[$i] = [ @array ];
           }
       The square brackets make a reference to a new array with a copy of
       what's in @array at the time of the assignment.  This is what you want.
       Note that this will produce something similar, but it's much harder to
       read:
           # Either without strict or having an outer-scope my @array;
           # declaration.
           for my $i (1..10) {
               @array = 0 .. $i;
               @{$AoA[$i]} = @array;
           }
       Is it the same?  Well, maybe so--and maybe not.  The subtle difference
       is that when you assign something in square brackets, you know for sure
       it's always a brand new reference with a new copy of the data.
       Something else could be going on in this new case with the
       "@{$AoA[$i]}" dereference on the left-hand-side of the assignment.  It
       all depends on whether $AoA[$i] had been undefined to start with, or
       whether it already contained a reference.  If you had already populated
       @AoA with references, as in
           $AoA[3] = \@another_array;
       Then the assignment with the indirection on the left-hand-side would
       use the existing reference that was already there:
           @{$AoA[3]} = @array;
       Of course, this would have the "interesting" effect of clobbering
       @another_array.  (Have you ever noticed how when a programmer says
       something is "interesting", that rather than meaning "intriguing",
       they're disturbingly more apt to mean that it's "annoying",
       "difficult", or both?  :-)
       So just remember always to use the array or hash constructors with "[]"
       or "{}", and you'll be fine, although it's not always optimally
       efficient.
       Surprisingly, the following dangerous-looking construct will actually
       work out fine:
           for my $i (1..10) {
               my @array = somefunc($i);
               $AoA[$i] = \@array;
           }
       That's because my() is more of a run-time statement than it is a
       compile-time declaration per se.  This means that the my() variable is
       remade afresh each time through the loop.  So even though it looks as
       though you stored the same variable reference each time, you actually
       did not!  This is a subtle distinction that can produce more efficient
       code at the risk of misleading all but the most experienced of
       programmers.  So I usually advise against teaching it to beginners.  In
       fact, except for passing arguments to functions, I seldom like to see
       the gimme-a-reference operator (backslash) used much at all in code.
       Instead, I advise beginners that they (and most of the rest of us)
       should try to use the much more easily understood constructors "[]" and
       "{}" instead of relying upon lexical (or dynamic) scoping and hidden
       reference-counting to do the right thing behind the scenes.
       In summary:
           $AoA[$i] = [ @array ];     # usually best
           $AoA[$i] = \@array;        # perilous; just how my() was that array?
           @{ $AoA[$i] } = @array;    # way too tricky for most programmers
CAVEAT ON PRECEDENCE
       Speaking of things like "@{$AoA[$i]}", the following are actually the
       same thing:
           $aref->[2][2]       # clear
           $$aref[2][2]        # confusing
       That's because Perl's precedence rules on its five prefix dereferencers
       (which look like someone swearing: "$ @ * % &") make them bind more
       tightly than the postfix subscripting brackets or braces!  This will no
       doubt come as a great shock to the C or C++ programmer, who is quite
       accustomed to using *a[i] to mean what's pointed to by the i'th element
       of "a".  That is, they first take the subscript, and only then
       dereference the thing at that subscript.  That's fine in C, but this
       isn't C.
       The seemingly equivalent construct in Perl, $$aref[$i] first does the
       deref of $aref, making it take $aref as a reference to an array, and
       then dereference that, and finally tell you the i'th value of the array
       pointed to by $AoA. If you wanted the C notion, you'd have to write
       "${$AoA[$i]}" to force the $AoA[$i] to get evaluated first before the
       leading "$" dereferencer.
WHY YOU SHOULD ALWAYS "use strict"
       If this is starting to sound scarier than it's worth, relax.  Perl has
       some features to help you avoid its most common pitfalls.  The best way
       to avoid getting confused is to start every program like this:
           #!/usr/bin/perl -w
           use strict;
       This way, you'll be forced to declare all your variables with my() and
       also disallow accidental "symbolic dereferencing".  Therefore if you'd
       done this:
           my $aref = [
               [ "fred", "barney", "pebbles", "bambam", "dino", ],
               [ "homer", "bart", "marge", "maggie", ],
               [ "george", "jane", "elroy", "judy", ],
           ];
           print $aref[2][2];
       The compiler would immediately flag that as an error at compile time,
       because you were accidentally accessing @aref, an undeclared variable,
       and it would thereby remind you to write instead:
           print $aref->[2][2]
DEBUGGING
       You can use the debugger's "x" command to dump out complex data
       structures.  For example, given the assignment to $AoA above, here's
       the debugger output:
           DB<1> x $AoA
           $AoA = ARRAY(0x13b5a0)
              0  ARRAY(0x1f0a24)
                 0  'fred'
                 1  'barney'
                 2  'pebbles'
                 3  'bambam'
                 4  'dino'
              1  ARRAY(0x13b558)
                 0  'homer'
                 1  'bart'
                 2  'marge'
                 3  'maggie'
              2  ARRAY(0x13b540)
                 0  'george'
                 1  'jane'
                 2  'elroy'
                 3  'judy'
CODE EXAMPLES
       Presented with little comment (these will get their own manpages
       someday) here are short code examples illustrating access of various
       types of data structures.
ARRAYS OF ARRAYS
   Declaration of an ARRAY OF ARRAYS
        @AoA = (
               [ "fred", "barney" ],
               [ "george", "jane", "elroy" ],
               [ "homer", "marge", "bart" ],
             );
   Generation of an ARRAY OF ARRAYS
        # reading from file
        while ( <> ) {
            push @AoA, [ split ];
        }
        # calling a function
        for $i ( 1 .. 10 ) {
            $AoA[$i] = [ somefunc($i) ];
        }
        # using temp vars
        for $i ( 1 .. 10 ) {
            @tmp = somefunc($i);
            $AoA[$i] = [ @tmp ];
        }
        # add to an existing row
        push @{ $AoA[0] }, "wilma", "betty";
   Access and Printing of an ARRAY OF ARRAYS
        # one element
        $AoA[0][0] = "Fred";
        # another element
        $AoA[1][1] =~ s/(\w)/\u$1/;
        # print the whole thing with refs
        for $aref ( @AoA ) {
            print "\t [ @$aref ],\n";
        }
        # print the whole thing with indices
        for $i ( 0 .. $#AoA ) {
            print "\t [ @{$AoA[$i]} ],\n";
        }
        # print the whole thing one at a time
        for $i ( 0 .. $#AoA ) {
            for $j ( 0 .. $#{ $AoA[$i] } ) {
                print "elt $i $j is $AoA[$i][$j]\n";
            }
        }
HASHES OF ARRAYS
   Declaration of a HASH OF ARRAYS
        %HoA = (
               flintstones        => [ "fred", "barney" ],
               jetsons            => [ "george", "jane", "elroy" ],
               simpsons           => [ "homer", "marge", "bart" ],
             );
   Generation of a HASH OF ARRAYS
        # reading from file
        # flintstones: fred barney wilma dino
        while ( <> ) {
            next unless s/^(.*?):\s*//;
            $HoA{$1} = [ split ];
        }
        # reading from file; more temps
        # flintstones: fred barney wilma dino
        while ( $line = <> ) {
            ($who, $rest) = split /:\s*/, $line, 2;
            @fields = split ' ', $rest;
            $HoA{$who} = [ @fields ];
        }
        # calling a function that returns a list
        for $group ( "simpsons", "jetsons", "flintstones" ) {
            $HoA{$group} = [ get_family($group) ];
        }
        # likewise, but using temps
        for $group ( "simpsons", "jetsons", "flintstones" ) {
            @members = get_family($group);
            $HoA{$group} = [ @members ];
        }
        # append new members to an existing family
        push @{ $HoA{"flintstones"} }, "wilma", "betty";
   Access and Printing of a HASH OF ARRAYS
        # one element
        $HoA{flintstones}[0] = "Fred";
        # another element
        $HoA{simpsons}[1] =~ s/(\w)/\u$1/;
        # print the whole thing
        foreach $family ( keys %HoA ) {
            print "$family: @{ $HoA{$family} }\n"
        }
        # print the whole thing with indices
        foreach $family ( keys %HoA ) {
            print "family: ";
            foreach $i ( 0 .. $#{ $HoA{$family} } ) {
                print " $i = $HoA{$family}[$i]";
            }
            print "\n";
        }
        # print the whole thing sorted by number of members
        foreach $family ( sort { @{$HoA{$b}} <=> @{$HoA{$a}} } keys %HoA ) {
            print "$family: @{ $HoA{$family} }\n"
        }
        # print the whole thing sorted by number of members and name
        foreach $family ( sort {
                                   @{$HoA{$b}} <=> @{$HoA{$a}}
                                               ||
                                           $a cmp $b
                   } keys %HoA )
        {
            print "$family: ", join(", ", sort @{ $HoA{$family} }), "\n";
        }
ARRAYS OF HASHES
   Declaration of an ARRAY OF HASHES
        @AoH = (
               {
                   Lead     => "fred",
                   Friend   => "barney",
               },
               {
                   Lead     => "george",
                   Wife     => "jane",
                   Son      => "elroy",
               },
               {
                   Lead     => "homer",
                   Wife     => "marge",
                   Son      => "bart",
               }
         );
   Generation of an ARRAY OF HASHES
        # reading from file
        # format: LEAD=fred FRIEND=barney
        while ( <> ) {
            $rec = {};
            for $field ( split ) {
                ($key, $value) = split /=/, $field;
                $rec->{$key} = $value;
            }
            push @AoH, $rec;
        }
        # reading from file
        # format: LEAD=fred FRIEND=barney
        # no temp
        while ( <> ) {
            push @AoH, { split /[\s+=]/ };
        }
        # calling a function  that returns a key/value pair list, like
        # "lead","fred","daughter","pebbles"
        while ( %fields = getnextpairset() ) {
            push @AoH, { %fields };
        }
        # likewise, but using no temp vars
        while (<>) {
            push @AoH, { parsepairs($_) };
        }
        # add key/value to an element
        $AoH[0]{pet} = "dino";
        $AoH[2]{pet} = "santa's little helper";
   Access and Printing of an ARRAY OF HASHES
        # one element
        $AoH[0]{lead} = "fred";
        # another element
        $AoH[1]{lead} =~ s/(\w)/\u$1/;
        # print the whole thing with refs
        for $href ( @AoH ) {
            print "{ ";
            for $role ( keys %$href ) {
                print "$role=$href->{$role} ";
            }
            print "}\n";
        }
        # print the whole thing with indices
        for $i ( 0 .. $#AoH ) {
            print "$i is { ";
            for $role ( keys %{ $AoH[$i] } ) {
                print "$role=$AoH[$i]{$role} ";
            }
            print "}\n";
        }
        # print the whole thing one at a time
        for $i ( 0 .. $#AoH ) {
            for $role ( keys %{ $AoH[$i] } ) {
                print "elt $i $role is $AoH[$i]{$role}\n";
            }
        }
HASHES OF HASHES
   Declaration of a HASH OF HASHES
        %HoH = (
               flintstones => {
                       lead      => "fred",
                       pal       => "barney",
               },
               jetsons     => {
                       lead      => "george",
                       wife      => "jane",
                       "his boy" => "elroy",
               },
               simpsons    => {
                       lead      => "homer",
                       wife      => "marge",
                       kid       => "bart",
               },
        );
   Generation of a HASH OF HASHES
        # reading from file
        # flintstones: lead=fred pal=barney wife=wilma pet=dino
        while ( <> ) {
            next unless s/^(.*?):\s*//;
            $who = $1;
            for $field ( split ) {
                ($key, $value) = split /=/, $field;
                $HoH{$who}{$key} = $value;
            }
        # reading from file; more temps
        while ( <> ) {
            next unless s/^(.*?):\s*//;
            $who = $1;
            $rec = {};
            $HoH{$who} = $rec;
            for $field ( split ) {
                ($key, $value) = split /=/, $field;
                $rec->{$key} = $value;
            }
        }
        # calling a function  that returns a key,value hash
        for $group ( "simpsons", "jetsons", "flintstones" ) {
            $HoH{$group} = { get_family($group) };
        }
        # likewise, but using temps
        for $group ( "simpsons", "jetsons", "flintstones" ) {
            %members = get_family($group);
            $HoH{$group} = { %members };
        }
        # append new members to an existing family
        %new_folks = (
            wife => "wilma",
            pet  => "dino",
        );
        for $what (keys %new_folks) {
            $HoH{flintstones}{$what} = $new_folks{$what};
        }
   Access and Printing of a HASH OF HASHES
        # one element
        $HoH{flintstones}{wife} = "wilma";
        # another element
        $HoH{simpsons}{lead} =~ s/(\w)/\u$1/;
        # print the whole thing
        foreach $family ( keys %HoH ) {
            print "$family: { ";
            for $role ( keys %{ $HoH{$family} } ) {
                print "$role=$HoH{$family}{$role} ";
            }
            print "}\n";
        }
        # print the whole thing  somewhat sorted
        foreach $family ( sort keys %HoH ) {
            print "$family: { ";
            for $role ( sort keys %{ $HoH{$family} } ) {
                print "$role=$HoH{$family}{$role} ";
            }
            print "}\n";
        }
        # print the whole thing sorted by number of members
        foreach $family ( sort { keys %{$HoH{$b}} <=> keys %{$HoH{$a}} }
                                                                    keys %HoH )
        {
            print "$family: { ";
            for $role ( sort keys %{ $HoH{$family} } ) {
                print "$role=$HoH{$family}{$role} ";
            }
            print "}\n";
        }
        # establish a sort order (rank) for each role
        $i = 0;
        for ( qw(lead wife son daughter pal pet) ) { $rank{$_} = ++$i }
        # now print the whole thing sorted by number of members
        foreach $family ( sort { keys %{ $HoH{$b} } <=> keys %{ $HoH{$a} } }
                                                                    keys %HoH )
        {
            print "$family: { ";
            # and print these according to rank order
            for $role ( sort { $rank{$a} <=> $rank{$b} }
                                                      keys %{ $HoH{$family} } )
            {
                print "$role=$HoH{$family}{$role} ";
            }
            print "}\n";
        }
MORE ELABORATE RECORDS
   Declaration of MORE ELABORATE RECORDS
       Here's a sample showing how to create and use a record whose fields are
       of many different sorts:
            $rec = {
                TEXT      => $string,
                SEQUENCE  => [ @old_values ],
                LOOKUP    => { %some_table },
                THATCODE  => \&some_function,
                THISCODE  => sub { $_[0] ** $_[1] },
                HANDLE    => \*STDOUT,
            };
            print $rec->{TEXT};
            print $rec->{SEQUENCE}[0];
            $last = pop @ { $rec->{SEQUENCE} };
            print $rec->{LOOKUP}{"key"};
            ($first_k, $first_v) = each %{ $rec->{LOOKUP} };
            $answer = $rec->{THATCODE}->($arg);
            $answer = $rec->{THISCODE}->($arg1, $arg2);
            # careful of extra block braces on fh ref
            print { $rec->{HANDLE} } "a string\n";
            use FileHandle;
            $rec->{HANDLE}->autoflush(1);
            $rec->{HANDLE}->print(" a string\n");
   Declaration of a HASH OF COMPLEX RECORDS
            %TV = (
               flintstones => {
                   series   => "flintstones",
                   nights   => [ qw(monday thursday friday) ],
                   members  => [
                       { name => "fred",    role => "lead", age  => 36, },
                       { name => "wilma",   role => "wife", age  => 31, },
                       { name => "pebbles", role => "kid",  age  =>  4, },
                   ],
               },
               jetsons     => {
                   series   => "jetsons",
                   nights   => [ qw(wednesday saturday) ],
                   members  => [
                       { name => "george",  role => "lead", age  => 41, },
                       { name => "jane",    role => "wife", age  => 39, },
                       { name => "elroy",   role => "kid",  age  =>  9, },
                   ],
                },
               simpsons    => {
                   series   => "simpsons",
                   nights   => [ qw(monday) ],
                   members  => [
                       { name => "homer", role => "lead", age  => 34, },
                       { name => "marge", role => "wife", age => 37, },
                       { name => "bart",  role => "kid",  age  =>  11, },
                   ],
                },
             );
   Generation of a HASH OF COMPLEX RECORDS
            # reading from file
            # this is most easily done by having the file itself be
            # in the raw data format as shown above.  perl is happy
            # to parse complex data structures if declared as data, so
            # sometimes it's easiest to do that
            # here's a piece by piece build up
            $rec = {};
            $rec->{series} = "flintstones";
            $rec->{nights} = [ find_days() ];
            @members = ();
            # assume this file in field=value syntax
            while (<>) {
                %fields = split /[\s=]+/;
                push @members, { %fields };
            }
            $rec->{members} = [ @members ];
            # now remember the whole thing
            $TV{ $rec->{series} } = $rec;
            ###########################################################
            # now, you might want to make interesting extra fields that
            # include pointers back into the same data structure so if
            # change one piece, it changes everywhere, like for example
            # if you wanted a {kids} field that was a reference
            # to an array of the kids' records without having duplicate
            # records and thus update problems.
            ###########################################################
            foreach $family (keys %TV) {
                $rec = $TV{$family}; # temp pointer
                @kids = ();
                for $person ( @{ $rec->{members} } ) {
                    if ($person->{role} =~ /kid|son|daughter/) {
                        push @kids, $person;
                    }
                }
                # REMEMBER: $rec and $TV{$family} point to same data!!
                $rec->{kids} = [ @kids ];
            }
            # you copied the array, but the array itself contains pointers
            # to uncopied objects. this means that if you make bart get
            # older via
            $TV{simpsons}{kids}[0]{age}++;
            # then this would also change in
            print $TV{simpsons}{members}[2]{age};
            # because $TV{simpsons}{kids}[0] and $TV{simpsons}{members}[2]
            # both point to the same underlying anonymous hash table
            # print the whole thing
            foreach $family ( keys %TV ) {
                print "the $family";
                print " is on during @{ $TV{$family}{nights} }\n";
                print "its members are:\n";
                for $who ( @{ $TV{$family}{members} } ) {
                    print " $who->{name} ($who->{role}), age $who->{age}\n";
                }
                print "it turns out that $TV{$family}{lead} has ";
                print scalar ( @{ $TV{$family}{kids} } ), " kids named ";
                print join (", ", map { $_->{name} } @{ $TV{$family}{kids} } );
                print "\n";
            }
Database Ties
       You cannot easily tie a multilevel data structure (such as a hash of
       hashes) to a dbm file.  The first problem is that all but GDBM and
       Berkeley DB have size limitations, but beyond that, you also have
       problems with how references are to be represented on disk.  One
       experimental module that does partially attempt to address this need is
       the MLDBM module.  Check your nearest CPAN site as described in
       perlmodlib for source code to MLDBM.
SEE ALSO
       perlref, perllol, perldata, perlobj
AUTHOR
       Tom Christiansen <tchrist AT perl.com>
perl v5.26.3                      2018-03-01                        PERLDSC(1)