PCREBUILD(3) Library Functions Manual PCREBUILD(3)
NAME
PCRE - Perl-compatible regular expressions
PCRE BUILD-TIME OPTIONS
This document describes the optional features of PCRE that can be
selected when the library is compiled. It assumes use of the configure
script, where the optional features are selected or deselected by pro-
viding options to configure before running the make command. However,
the same options can be selected in both Unix-like and non-Unix-like
environments using the GUI facility of cmake-gui if you are using CMake
instead of configure to build PCRE.
There is a lot more information about building PCRE without using con-
figure (including information about using CMake or building "by hand")
in the file called NON-AUTOTOOLS-BUILD, which is part of the PCRE dis-
tribution. You should consult this file as well as the README file if
you are building in a non-Unix-like environment.
The complete list of options for configure (which includes the standard
ones such as the selection of the installation directory) can be
obtained by running
./configure --help
The following sections include descriptions of options whose names
begin with --enable or --disable. These settings specify changes to the
defaults for the configure command. Because of the way that configure
works, --enable and --disable always come in pairs, so the complemen-
tary option always exists as well, but as it specifies the default, it
is not described.
BUILDING 8-BIT, 16-BIT AND 32-BIT LIBRARIES
By default, a library called libpcre is built, containing functions
that take string arguments contained in vectors of bytes, either as
single-byte characters, or interpreted as UTF-8 strings. You can also
build a separate library, called libpcre16, in which strings are con-
tained in vectors of 16-bit data units and interpreted either as sin-
gle-unit characters or UTF-16 strings, by adding
--enable-pcre16
to the configure command. You can also build a separate library, called
libpcre32, in which strings are contained in vectors of 32-bit data
units and interpreted either as single-unit characters or UTF-32
strings, by adding
--enable-pcre32
to the configure command. If you do not want the 8-bit library, add
--disable-pcre8
as well. At least one of the three libraries must be built. Note that
the C++ and POSIX wrappers are for the 8-bit library only, and that
pcregrep is an 8-bit program. None of these are built if you select
only the 16-bit or 32-bit libraries.
BUILDING SHARED AND STATIC LIBRARIES
The PCRE building process uses libtool to build both shared and static
Unix libraries by default. You can suppress one of these by adding one
of
--disable-shared
--disable-static
to the configure command, as required.
C++ SUPPORT
By default, if the 8-bit library is being built, the configure script
will search for a C++ compiler and C++ header files. If it finds them,
it automatically builds the C++ wrapper library (which supports only
8-bit strings). You can disable this by adding
--disable-cpp
to the configure command.
UTF-8, UTF-16 AND UTF-32 SUPPORT
To build PCRE with support for UTF Unicode character strings, add
--enable-utf
to the configure command. This setting applies to all three libraries,
adding support for UTF-8 to the 8-bit library, support for UTF-16 to
the 16-bit library, and support for UTF-32 to the to the 32-bit
library. There are no separate options for enabling UTF-8, UTF-16 and
UTF-32 independently because that would allow ridiculous settings such
as requesting UTF-16 support while building only the 8-bit library. It
is not possible to build one library with UTF support and another with-
out in the same configuration. (For backwards compatibility, --enable-
utf8 is a synonym of --enable-utf.)
Of itself, this setting does not make PCRE treat strings as UTF-8,
UTF-16 or UTF-32. As well as compiling PCRE with this option, you also
have have to set the PCRE_UTF8, PCRE_UTF16 or PCRE_UTF32 option (as
appropriate) when you call one of the pattern compiling functions.
If you set --enable-utf when compiling in an EBCDIC environment, PCRE
expects its input to be either ASCII or UTF-8 (depending on the run-
time option). It is not possible to support both EBCDIC and UTF-8 codes
in the same version of the library. Consequently, --enable-utf and
--enable-ebcdic are mutually exclusive.
UNICODE CHARACTER PROPERTY SUPPORT
UTF support allows the libraries to process character codepoints up to
0x10ffff in the strings that they handle. On its own, however, it does
not provide any facilities for accessing the properties of such charac-
ters. If you want to be able to use the pattern escapes \P, \p, and \X,
which refer to Unicode character properties, you must add
--enable-unicode-properties
to the configure command. This implies UTF support, even if you have
not explicitly requested it.
Including Unicode property support adds around 30K of tables to the
PCRE library. Only the general category properties such as Lu and Nd
are supported. Details are given in the pcrepattern documentation.
JUST-IN-TIME COMPILER SUPPORT
Just-in-time compiler support is included in the build by specifying
--enable-jit
This support is available only for certain hardware architectures. If
this option is set for an unsupported architecture, a compile time
error occurs. See the pcrejit documentation for a discussion of JIT
usage. When JIT support is enabled, pcregrep automatically makes use of
it, unless you add
--disable-pcregrep-jit
to the "configure" command.
CODE VALUE OF NEWLINE
By default, PCRE interprets the linefeed (LF) character as indicating
the end of a line. This is the normal newline character on Unix-like
systems. You can compile PCRE to use carriage return (CR) instead, by
adding
--enable-newline-is-cr
to the configure command. There is also a --enable-newline-is-lf
option, which explicitly specifies linefeed as the newline character.
Alternatively, you can specify that line endings are to be indicated by
the two character sequence CRLF. If you want this, add
--enable-newline-is-crlf
to the configure command. There is a fourth option, specified by
--enable-newline-is-anycrlf
which causes PCRE to recognize any of the three sequences CR, LF, or
CRLF as indicating a line ending. Finally, a fifth option, specified by
--enable-newline-is-any
causes PCRE to recognize any Unicode newline sequence.
Whatever line ending convention is selected when PCRE is built can be
overridden when the library functions are called. At build time it is
conventional to use the standard for your operating system.
WHAT \R MATCHES
By default, the sequence \R in a pattern matches any Unicode newline
sequence, whatever has been selected as the line ending sequence. If
you specify
--enable-bsr-anycrlf
the default is changed so that \R matches only CR, LF, or CRLF. What-
ever is selected when PCRE is built can be overridden when the library
functions are called.
POSIX MALLOC USAGE
When the 8-bit library is called through the POSIX interface (see the
pcreposix documentation), additional working storage is required for
holding the pointers to capturing substrings, because PCRE requires
three integers per substring, whereas the POSIX interface provides only
two. If the number of expected substrings is small, the wrapper func-
tion uses space on the stack, because this is faster than using mal-
loc() for each call. The default threshold above which the stack is no
longer used is 10; it can be changed by adding a setting such as
--with-posix-malloc-threshold=20
to the configure command.
HANDLING VERY LARGE PATTERNS
Within a compiled pattern, offset values are used to point from one
part to another (for example, from an opening parenthesis to an alter-
nation metacharacter). By default, in the 8-bit and 16-bit libraries,
two-byte values are used for these offsets, leading to a maximum size
for a compiled pattern of around 64K. This is sufficient to handle all
but the most gigantic patterns. Nevertheless, some people do want to
process truly enormous patterns, so it is possible to compile PCRE to
use three-byte or four-byte offsets by adding a setting such as
--with-link-size=3
to the configure command. The value given must be 2, 3, or 4. For the
16-bit library, a value of 3 is rounded up to 4. In these libraries,
using longer offsets slows down the operation of PCRE because it has to
load additional data when handling them. For the 32-bit library the
value is always 4 and cannot be overridden; the value of --with-link-
size is ignored.
AVOIDING EXCESSIVE STACK USAGE
When matching with the pcre_exec() function, PCRE implements backtrack-
ing by making recursive calls to an internal function called match().
In environments where the size of the stack is limited, this can se-
verely limit PCRE's operation. (The Unix environment does not usually
suffer from this problem, but it may sometimes be necessary to increase
the maximum stack size. There is a discussion in the pcrestack docu-
mentation.) An alternative approach to recursion that uses memory from
the heap to remember data, instead of using recursive function calls,
has been implemented to work round the problem of limited stack size.
If you want to build a version of PCRE that works this way, add
--disable-stack-for-recursion
to the configure command. With this configuration, PCRE will use the
pcre_stack_malloc and pcre_stack_free variables to call memory manage-
ment functions. By default these point to malloc() and free(), but you
can replace the pointers so that your own functions are used instead.
Separate functions are provided rather than using pcre_malloc and
pcre_free because the usage is very predictable: the block sizes
requested are always the same, and the blocks are always freed in
reverse order. A calling program might be able to implement optimized
functions that perform better than malloc() and free(). PCRE runs
noticeably more slowly when built in this way. This option affects only
the pcre_exec() function; it is not relevant for pcre_dfa_exec().
LIMITING PCRE RESOURCE USAGE
Internally, PCRE has a function called match(), which it calls repeat-
edly (sometimes recursively) when matching a pattern with the
pcre_exec() function. By controlling the maximum number of times this
function may be called during a single matching operation, a limit can
be placed on the resources used by a single call to pcre_exec(). The
limit can be changed at run time, as described in the pcreapi documen-
tation. The default is 10 million, but this can be changed by adding a
setting such as
--with-match-limit=500000
to the configure command. This setting has no effect on the
pcre_dfa_exec() matching function.
In some environments it is desirable to limit the depth of recursive
calls of match() more strictly than the total number of calls, in order
to restrict the maximum amount of stack (or heap, if --disable-stack-
for-recursion is specified) that is used. A second limit controls this;
it defaults to the value that is set for --with-match-limit, which
imposes no additional constraints. However, you can set a lower limit
by adding, for example,
--with-match-limit-recursion=10000
to the configure command. This value can also be overridden at run
time.
CREATING CHARACTER TABLES AT BUILD TIME
PCRE uses fixed tables for processing characters whose code values are
less than 256. By default, PCRE is built with a set of tables that are
distributed in the file pcre_chartables.c.dist. These tables are for
ASCII codes only. If you add
--enable-rebuild-chartables
to the configure command, the distributed tables are no longer used.
Instead, a program called dftables is compiled and run. This outputs
the source for new set of tables, created in the default locale of your
C run-time system. (This method of replacing the tables does not work
if you are cross compiling, because dftables is run on the local host.
If you need to create alternative tables when cross compiling, you will
have to do so "by hand".)
USING EBCDIC CODE
PCRE assumes by default that it will run in an environment where the
character code is ASCII (or Unicode, which is a superset of ASCII).
This is the case for most computer operating systems. PCRE can, how-
ever, be compiled to run in an EBCDIC environment by adding
--enable-ebcdic
to the configure command. This setting implies --enable-rebuild-charta-
bles. You should only use it if you know that you are in an EBCDIC
environment (for example, an IBM mainframe operating system). The
--enable-ebcdic option is incompatible with --enable-utf.
The EBCDIC character that corresponds to an ASCII LF is assumed to have
the value 0x15 by default. However, in some EBCDIC environments, 0x25
is used. In such an environment you should use
--enable-ebcdic-nl25
as well as, or instead of, --enable-ebcdic. The EBCDIC character for CR
has the same value as in ASCII, namely, 0x0d. Whichever of 0x15 and
0x25 is not chosen as LF is made to correspond to the Unicode NEL char-
acter (which, in Unicode, is 0x85).
The options that select newline behaviour, such as --enable-newline-is-
cr, and equivalent run-time options, refer to these character values in
an EBCDIC environment.
PCREGREP OPTIONS FOR COMPRESSED FILE SUPPORT
By default, pcregrep reads all files as plain text. You can build it so
that it recognizes files whose names end in .gz or .bz2, and reads them
with libz or libbz2, respectively, by adding one or both of
--enable-pcregrep-libz
--enable-pcregrep-libbz2
to the configure command. These options naturally require that the rel-
evant libraries are installed on your system. Configuration will fail
if they are not.
PCREGREP BUFFER SIZE
pcregrep uses an internal buffer to hold a "window" on the file it is
scanning, in order to be able to output "before" and "after" lines when
it finds a match. The size of the buffer is controlled by a parameter
whose default value is 20K. The buffer itself is three times this size,
but because of the way it is used for holding "before" lines, the long-
est line that is guaranteed to be processable is the parameter size.
You can change the default parameter value by adding, for example,
--with-pcregrep-bufsize=50K
to the configure command. The caller of pcregrep can, however, override
this value by specifying a run-time option.
PCRETEST OPTION FOR LIBREADLINE SUPPORT
If you add
--enable-pcretest-libreadline
to the configure command, pcretest is linked with the libreadline
library, and when its input is from a terminal, it reads it using the
readline() function. This provides line-editing and history facilities.
Note that libreadline is GPL-licensed, so if you distribute a binary of
pcretest linked in this way, there may be licensing issues.
Setting this option causes the -lreadline option to be added to the
pcretest build. In many operating environments with a sytem-installed
libreadline this is sufficient. However, in some environments (e.g. if
an unmodified distribution version of readline is in use), some extra
configuration may be necessary. The INSTALL file for libreadline says
this:
"Readline uses the termcap functions, but does not link with the
termcap or curses library itself, allowing applications which link
with readline the to choose an appropriate library."
If your environment has not been set up so that an appropriate library
is automatically included, you may need to add something like
LIBS="-ncurses"
immediately before the configure command.
DEBUGGING WITH VALGRIND SUPPORT
By adding the
--enable-valgrind
option to to the configure command, PCRE will use valgrind annotations
to mark certain memory regions as unaddressable. This allows it to
detect invalid memory accesses, and is mostly useful for debugging PCRE
itself.
CODE COVERAGE REPORTING
If your C compiler is gcc, you can build a version of PCRE that can
generate a code coverage report for its test suite. To enable this, you
must install lcov version 1.6 or above. Then specify
--enable-coverage
to the configure command and build PCRE in the usual way.
Note that using ccache (a caching C compiler) is incompatible with code
coverage reporting. If you have configured ccache to run automatically
on your system, you must set the environment variable
CCACHE_DISABLE=1
before running make to build PCRE, so that ccache is not used.
When --enable-coverage is used, the following addition targets are
added to the Makefile:
make coverage
This creates a fresh coverage report for the PCRE test suite. It is
equivalent to running "make coverage-reset", "make coverage-baseline",
"make check", and then "make coverage-report".
make coverage-reset
This zeroes the coverage counters, but does nothing else.
make coverage-baseline
This captures baseline coverage information.
make coverage-report
This creates the coverage report.
make coverage-clean-report
This removes the generated coverage report without cleaning the cover-
age data itself.
make coverage-clean-data
This removes the captured coverage data without removing the coverage
files created at compile time (*.gcno).
make coverage-clean
This cleans all coverage data including the generated coverage report.
For more information about code coverage, see the gcov and lcov docu-
mentation.
SEE ALSO
pcreapi(3), pcre16, pcre32, pcre_config(3).
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 30 October 2012
Copyright (c) 1997-2012 University of Cambridge.
PCRE 8.32 30 October 2012 PCREBUILD(3)