AIO(7) Linux Programmer's Manual AIO(7)
NAME
aio - POSIX asynchronous I/O overview
DESCRIPTION
The POSIX asynchronous I/O (AIO) interface allows applications to ini-
tiate one or more I/O operations that are performed asynchronously
(i.e., in the background). The application can elect to be notified of
completion of the I/O operation in a variety of ways: by delivery of a
signal, by instantiation of a thread, or no notification at all.
The POSIX AIO interface consists of the following functions:
aio_read(3) Enqueue a read request. This is the asynchronous ana-
log of read(2).
aio_write(3) Enqueue a write request. This is the asynchronous ana-
log of write(2).
aio_fsync(3) Enqueue a sync request for the I/O operations on a file
descriptor. This is the asynchronous analog of
fsync(2) and fdatasync(2).
aio_error(3) Obtain the error status of an enqueued I/O request.
aio_return(3) Obtain the return status of a completed I/O request.
aio_suspend(3) Suspend the caller until one or more of a specified set
of I/O requests completes.
aio_cancel(3) Attempt to cancel outstanding I/O requests on a speci-
fied file descriptor.
lio_listio(3) Enqueue multiple I/O requests using a single function
call.
The aiocb ("asynchronous I/O control block") structure defines parame-
ters that control an I/O operation. An argument of this type is
employed with all of the functions listed above. This structure has
the following form:
#include <aiocb.h>
struct aiocb {
/* The order of these fields is implementation-dependent */
int aio_fildes; /* File descriptor */
off_t aio_offset; /* File offset */
volatile void *aio_buf; /* Location of buffer */
size_t aio_nbytes; /* Length of transfer */
int aio_reqprio; /* Request priority */
struct sigevent aio_sigevent; /* Notification method */
int aio_lio_opcode; /* Operation to be performed;
lio_listio() only */
/* Various implementation-internal fields not shown */
};
/* Operation codes for 'aio_lio_opcode': */
enum { LIO_READ, LIO_WRITE, LIO_NOP };
The fields of this structure are as follows:
aio_fildes The file descriptor on which the I/O operation is to be
performed.
aio_offset This is the file offset at which the I/O operation is
to be performed.
aio_buf This is the buffer used to transfer data for a read or
write operation.
aio_nbytes This is the size of the buffer pointed to by aio_buf.
aio_reqprio This field specifies a value that is subtracted from
the calling thread's real-time priority in order to
determine the priority for execution of this I/O
request (see pthread_setschedparam(3)). The specified
value must be between 0 and the value returned by
sysconf(_SC_AIO_PRIO_DELTA_MAX). This field is ignored
for file synchronization operations.
aio_sigevent This field is a structure that specifies how the caller
is to be notified when the asynchronous I/O operation
completes. Possible values for
aio_sigevent.sigev_notify are SIGEV_NONE, SIGEV_SIGNAL,
and SIGEV_THREAD. See sigevent(7) for further details.
aio_lio_opcode The type of operation to be performed; used only for
lio_listio(3).
In addition to the standard functions listed above, the GNU C library
provides the following extension to the POSIX AIO API:
aio_init(3) Set parameters for tuning the behavior of the glibc
POSIX AIO implementation.
ERRORS
EINVAL The aio_reqprio field of the aiocb structure was less than 0, or
was greater than the limit returned by the call
sysconf(_SC_AIO_PRIO_DELTA_MAX).
VERSIONS
The POSIX AIO interfaces are provided by glibc since version 2.1.
CONFORMING TO
POSIX.1-2001, POSIX.1-2008.
NOTES
It is a good idea to zero out the control block buffer before use (see
memset(3)). The control block buffer and the buffer pointed to by
aio_buf must not be changed while the I/O operation is in progress.
These buffers must remain valid until the I/O operation completes.
Simultaneous asynchronous read or write operations using the same aiocb
structure yield undefined results.
The current Linux POSIX AIO implementation is provided in user space by
glibc. This has a number of limitations, most notably that maintaining
multiple threads to perform I/O operations is expensive and scales
poorly. Work has been in progress for some time on a kernel state-
machine-based implementation of asynchronous I/O (see io_submit(2),
io_setup(2), io_cancel(2), io_destroy(2), io_getevents(2)), but this
implementation hasn't yet matured to the point where the POSIX AIO
implementation can be completely reimplemented using the kernel system
calls.
EXAMPLE
The program below opens each of the files named in its command-line
arguments and queues a request on the resulting file descriptor using
aio_read(3). The program then loops, periodically monitoring each of
the I/O operations that is still in progress using aio_error(3). Each
of the I/O requests is set up to provide notification by delivery of a
signal. After all I/O requests have completed, the program retrieves
their status using aio_return(3).
The SIGQUIT signal (generated by typing control-\) causes the program
to request cancellation of each of the outstanding requests using
aio_cancel(3).
Here is an example of what we might see when running this program. In
this example, the program queues two requests to standard input, and
these are satisfied by two lines of input containing "abc" and "x".
$ ./a.out /dev/stdin /dev/stdin
opened /dev/stdin on descriptor 3
opened /dev/stdin on descriptor 4
aio_error():
for request 0 (descriptor 3): In progress
for request 1 (descriptor 4): In progress
abc
I/O completion signal received
aio_error():
for request 0 (descriptor 3): I/O succeeded
for request 1 (descriptor 4): In progress
aio_error():
for request 1 (descriptor 4): In progress
x
I/O completion signal received
aio_error():
for request 1 (descriptor 4): I/O succeeded
All I/O requests completed
aio_return():
for request 0 (descriptor 3): 4
for request 1 (descriptor 4): 2
Program source
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>
#include <aio.h>
#include <signal.h>
#define BUF_SIZE 20 /* Size of buffers for read operations */
#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); } while (0)
#define errMsg(msg) do { perror(msg); } while (0)
struct ioRequest { /* Application-defined structure for tracking
I/O requests */
int reqNum;
int status;
struct aiocb *aiocbp;
};
static volatile sig_atomic_t gotSIGQUIT = 0;
/* On delivery of SIGQUIT, we attempt to
cancel all outstanding I/O requests */
static void /* Handler for SIGQUIT */
quitHandler(int sig)
{
gotSIGQUIT = 1;
}
#define IO_SIGNAL SIGUSR1 /* Signal used to notify I/O completion */
static void /* Handler for I/O completion signal */
aioSigHandler(int sig, siginfo_t *si, void *ucontext)
{
if (si->si_code == SI_ASYNCIO) {
write(STDOUT_FILENO, "I/O completion signal received\n", 31);
/* The corresponding ioRequest structure would be available as
struct ioRequest *ioReq = si->si_value.sival_ptr;
and the file descriptor would then be available via
ioReq->aiocbp->aio_fildes */
}
}
int
main(int argc, char *argv[])
{
struct ioRequest *ioList;
struct aiocb *aiocbList;
struct sigaction sa;
int s, j;
int numReqs; /* Total number of queued I/O requests */
int openReqs; /* Number of I/O requests still in progress */
if (argc < 2) {
fprintf(stderr, "Usage: %s <pathname> <pathname>...\n",
argv[0]);
exit(EXIT_FAILURE);
}
numReqs = argc - 1;
/* Allocate our arrays */
ioList = calloc(numReqs, sizeof(struct ioRequest));
if (ioList == NULL)
errExit("calloc");
aiocbList = calloc(numReqs, sizeof(struct aiocb));
if (aiocbList == NULL)
errExit("calloc");
/* Establish handlers for SIGQUIT and the I/O completion signal */
sa.sa_flags = SA_RESTART;
sigemptyset(&sa.sa_mask);
sa.sa_handler = quitHandler;
if (sigaction(SIGQUIT, &sa, NULL) == -1)
errExit("sigaction");
sa.sa_flags = SA_RESTART | SA_SIGINFO;
sa.sa_sigaction = aioSigHandler;
if (sigaction(IO_SIGNAL, &sa, NULL) == -1)
errExit("sigaction");
/* Open each file specified on the command line, and queue
a read request on the resulting file descriptor */
for (j = 0; j < numReqs; j++) {
ioList[j].reqNum = j;
ioList[j].status = EINPROGRESS;
ioList[j].aiocbp = &aiocbList[j];
ioList[j].aiocbp->aio_fildes = open(argv[j + 1], O_RDONLY);
if (ioList[j].aiocbp->aio_fildes == -1)
errExit("open");
printf("opened %s on descriptor %d\n", argv[j + 1],
ioList[j].aiocbp->aio_fildes);
ioList[j].aiocbp->aio_buf = malloc(BUF_SIZE);
if (ioList[j].aiocbp->aio_buf == NULL)
errExit("malloc");
ioList[j].aiocbp->aio_nbytes = BUF_SIZE;
ioList[j].aiocbp->aio_reqprio = 0;
ioList[j].aiocbp->aio_offset = 0;
ioList[j].aiocbp->aio_sigevent.sigev_notify = SIGEV_SIGNAL;
ioList[j].aiocbp->aio_sigevent.sigev_signo = IO_SIGNAL;
ioList[j].aiocbp->aio_sigevent.sigev_value.sival_ptr =
&ioList[j];
s = aio_read(ioList[j].aiocbp);
if (s == -1)
errExit("aio_read");
}
openReqs = numReqs;
/* Loop, monitoring status of I/O requests */
while (openReqs > 0) {
sleep(3); /* Delay between each monitoring step */
if (gotSIGQUIT) {
/* On receipt of SIGQUIT, attempt to cancel each of the
outstanding I/O requests, and display status returned
from the cancellation requests */
printf("got SIGQUIT; canceling I/O requests: \n");
for (j = 0; j < numReqs; j++) {
if (ioList[j].status == EINPROGRESS) {
printf(" Request %d on descriptor %d:", j,
ioList[j].aiocbp->aio_fildes);
s = aio_cancel(ioList[j].aiocbp->aio_fildes,
ioList[j].aiocbp);
if (s == AIO_CANCELED)
printf("I/O canceled\n");
else if (s == AIO_NOTCANCELED)
printf("I/O not canceled\n");
else if (s == AIO_ALLDONE)
printf("I/O all done\n");
else
errMsg("aio_cancel");
}
}
gotSIGQUIT = 0;
}
/* Check the status of each I/O request that is still
in progress */
printf("aio_error():\n");
for (j = 0; j < numReqs; j++) {
if (ioList[j].status == EINPROGRESS) {
printf(" for request %d (descriptor %d): ",
j, ioList[j].aiocbp->aio_fildes);
ioList[j].status = aio_error(ioList[j].aiocbp);
switch (ioList[j].status) {
case 0:
printf("I/O succeeded\n");
break;
case EINPROGRESS:
printf("In progress\n");
break;
case ECANCELED:
printf("Canceled\n");
break;
default:
errMsg("aio_error");
break;
}
if (ioList[j].status != EINPROGRESS)
openReqs--;
}
}
}
printf("All I/O requests completed\n");
/* Check status return of all I/O requests */
printf("aio_return():\n");
for (j = 0; j < numReqs; j++) {
ssize_t s;
s = aio_return(ioList[j].aiocbp);
printf(" for request %d (descriptor %d): %zd\n",
j, ioList[j].aiocbp->aio_fildes, s);
}
exit(EXIT_SUCCESS);
}
SEE ALSO
io_cancel(2), io_destroy(2), io_getevents(2), io_setup(2),
io_submit(2), aio_cancel(3), aio_error(3), aio_init(3), aio_read(3),
aio_return(3), aio_write(3), lio_listio(3)
"Asynchronous I/O Support in Linux 2.5", Bhattacharya, Pratt,
Pulavarty, and Morgan, Proceedings of the Linux Symposium, 2003,
<https://www.kernel.org/doc/ols/2003/ols2003-pages-351-366.pdf>
COLOPHON
This page is part of release 4.15 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.
Linux 2017-09-15 AIO(7)