X509V3_CONFIG(5) OpenSSL X509V3_CONFIG(5)
NAME
x509v3_config - X509 V3 certificate extension configuration format
DESCRIPTION
Several of the OpenSSL utilities can add extensions to a certificate or
certificate request based on the contents of a configuration file.
Typically the application will contain an option to point to an
extension section. Each line of the extension section takes the form:
extension_name=[critical,] extension_options
If critical is present then the extension will be critical.
The format of extension_options depends on the value of extension_name.
There are four main types of extension: string extensions, multi-valued
extensions, raw and arbitrary extensions.
String extensions simply have a string which contains either the value
itself or how it is obtained.
For example:
nsComment="This is a Comment"
Multi-valued extensions have a short form and a long form. The short
form is a list of names and values:
basicConstraints=critical,CA:true,pathlen:1
The long form allows the values to be placed in a separate section:
basicConstraints=critical,@bs_section
[bs_section]
CA=true
pathlen=1
Both forms are equivalent.
The syntax of raw extensions is governed by the extension code: it can
for example contain data in multiple sections. The correct syntax to
use is defined by the extension code itself: check out the certificate
policies extension for an example.
If an extension type is unsupported then the arbitrary extension syntax
must be used, see the ARBITRARY EXTENSIONS section for more details.
STANDARD EXTENSIONS
The following sections describe each supported extension in detail.
Basic Constraints.
This is a multi valued extension which indicates whether a certificate
is a CA certificate. The first (mandatory) name is CA followed by TRUE
or FALSE. If CA is TRUE then an optional pathlen name followed by a
nonnegative value can be included.
For example:
basicConstraints=CA:TRUE
basicConstraints=CA:FALSE
basicConstraints=critical,CA:TRUE, pathlen:0
A CA certificate must include the basicConstraints value with the CA
field set to TRUE. An end user certificate must either set CA to FALSE
or exclude the extension entirely. Some software may require the
inclusion of basicConstraints with CA set to FALSE for end entity
certificates.
The pathlen parameter indicates the maximum number of CAs that can
appear below this one in a chain. So if you have a CA with a pathlen of
zero it can only be used to sign end user certificates and not further
CAs.
Key Usage.
Key usage is a multi valued extension consisting of a list of names of
the permitted key usages.
The supported names are: digitalSignature, nonRepudiation,
keyEncipherment, dataEncipherment, keyAgreement, keyCertSign, cRLSign,
encipherOnly and decipherOnly.
Examples:
keyUsage=digitalSignature, nonRepudiation
keyUsage=critical, keyCertSign
Extended Key Usage.
This extensions consists of a list of usages indicating purposes for
which the certificate public key can be used for,
These can either be object short names or the dotted numerical form of
OIDs. While any OID can be used only certain values make sense. In
particular the following PKIX, NS and MS values are meaningful:
Value Meaning
----- -------
serverAuth SSL/TLS Web Server Authentication.
clientAuth SSL/TLS Web Client Authentication.
codeSigning Code signing.
emailProtection E-mail Protection (S/MIME).
timeStamping Trusted Timestamping
OCSPSigning OCSP Signing
ipsecIKE ipsec Internet Key Exchange
msCodeInd Microsoft Individual Code Signing (authenticode)
msCodeCom Microsoft Commercial Code Signing (authenticode)
msCTLSign Microsoft Trust List Signing
msEFS Microsoft Encrypted File System
Examples:
extendedKeyUsage=critical,codeSigning,1.2.3.4
extendedKeyUsage=serverAuth,clientAuth
Subject Key Identifier.
This is really a string extension and can take two possible values.
Either the word hash which will automatically follow the guidelines in
RFC3280 or a hex string giving the extension value to include. The use
of the hex string is strongly discouraged.
Example:
subjectKeyIdentifier=hash
Authority Key Identifier.
The authority key identifier extension permits two options. keyid and
issuer: both can take the optional value "always".
If the keyid option is present an attempt is made to copy the subject
key identifier from the parent certificate. If the value "always" is
present then an error is returned if the option fails.
The issuer option copies the issuer and serial number from the issuer
certificate. This will only be done if the keyid option fails or is not
included unless the "always" flag will always include the value.
Example:
authorityKeyIdentifier=keyid,issuer
Subject Alternative Name.
The subject alternative name extension allows various literal values to
be included in the configuration file. These include email (an email
address) URI a uniform resource indicator, DNS (a DNS domain name), RID
(a registered ID: OBJECT IDENTIFIER), IP (an IP address), dirName (a
distinguished name) and otherName.
The email option include a special 'copy' value. This will
automatically include any email addresses contained in the certificate
subject name in the extension.
The IP address used in the IP options can be in either IPv4 or IPv6
format.
The value of dirName should point to a section containing the
distinguished name to use as a set of name value pairs. Multi values
AVAs can be formed by prefacing the name with a + character.
otherName can include arbitrary data associated with an OID: the value
should be the OID followed by a semicolon and the content in standard
ASN1_generate_nconf(3) format.
Examples:
subjectAltName=email:copy,email:my AT other.address,URI:http://my.url.here/
subjectAltName=IP:192.168.7.1
subjectAltName=IP:13::17
subjectAltName=email:my AT other.address,RID:1.2.3.4
subjectAltName=otherName:1.2.3.4;UTF8:some other identifier
subjectAltName=dirName:dir_sect
[dir_sect]
C=UK
O=My Organization
OU=My Unit
CN=My Name
Issuer Alternative Name.
The issuer alternative name option supports all the literal options of
subject alternative name. It does not support the email:copy option
because that would not make sense. It does support an additional
issuer:copy option that will copy all the subject alternative name
values from the issuer certificate (if possible).
Example:
issuerAltName = issuer:copy
Authority Info Access.
The authority information access extension gives details about how to
access certain information relating to the CA. Its syntax is
accessOID;location where location has the same syntax as subject
alternative name (except that email:copy is not supported). accessOID
can be any valid OID but only certain values are meaningful, for
example OCSP and caIssuers.
Example:
authorityInfoAccess = OCSP;URI:http://ocsp.my.host/
authorityInfoAccess = caIssuers;URI:http://my.ca/ca.html
CRL distribution points
This is a multi-valued extension whose options can be either in
name:value pair using the same form as subject alternative name or a
single value representing a section name containing all the
distribution point fields.
For a name:value pair a new DistributionPoint with the fullName field
set to the given value both the cRLissuer and reasons fields are
omitted in this case.
In the single option case the section indicated contains values for
each field. In this section:
If the name is "fullname" the value field should contain the full name
of the distribution point in the same format as subject alternative
name.
If the name is "relativename" then the value field should contain a
section name whose contents represent a DN fragment to be placed in
this field.
The name "CRLIssuer" if present should contain a value for this field
in subject alternative name format.
If the name is "reasons" the value field should consist of a comma
separated field containing the reasons. Valid reasons are:
"keyCompromise", "CACompromise", "affiliationChanged", "superseded",
"cessationOfOperation", "certificateHold", "privilegeWithdrawn" and
"AACompromise".
Simple examples:
crlDistributionPoints=URI:http://myhost.com/myca.crl
crlDistributionPoints=URI:http://my.com/my.crl,URI:http://oth.com/my.crl
Full distribution point example:
crlDistributionPoints=crldp1_section
[crldp1_section]
fullname=URI:http://myhost.com/myca.crl
CRLissuer=dirName:issuer_sect
reasons=keyCompromise, CACompromise
[issuer_sect]
C=UK
O=Organisation
CN=Some Name
Issuing Distribution Point
This extension should only appear in CRLs. It is a multi valued
extension whose syntax is similar to the "section" pointed to by the
CRL distribution points extension with a few differences.
The names "reasons" and "CRLissuer" are not recognized.
The name "onlysomereasons" is accepted which sets this field. The value
is in the same format as the CRL distribution point "reasons" field.
The names "onlyuser", "onlyCA", "onlyAA" and "indirectCRL" are also
accepted the values should be a boolean value (TRUE or FALSE) to
indicate the value of the corresponding field.
Example:
issuingDistributionPoint=critical, @idp_section
[idp_section]
fullname=URI:http://myhost.com/myca.crl
indirectCRL=TRUE
onlysomereasons=keyCompromise, CACompromise
[issuer_sect]
C=UK
O=Organisation
CN=Some Name
Certificate Policies.
This is a raw extension. All the fields of this extension can be set by
using the appropriate syntax.
If you follow the PKIX recommendations and just using one OID then you
just include the value of that OID. Multiple OIDs can be set separated
by commas, for example:
certificatePolicies= 1.2.4.5, 1.1.3.4
If you wish to include qualifiers then the policy OID and qualifiers
need to be specified in a separate section: this is done by using the
@section syntax instead of a literal OID value.
The section referred to must include the policy OID using the name
policyIdentifier, cPSuri qualifiers can be included using the syntax:
CPS.nnn=value
userNotice qualifiers can be set using the syntax:
userNotice.nnn=@notice
The value of the userNotice qualifier is specified in the relevant
section. This section can include explicitText, organization and
noticeNumbers options. explicitText and organization are text strings,
noticeNumbers is a comma separated list of numbers. The organization
and noticeNumbers options (if included) must BOTH be present. If you
use the userNotice option with IE5 then you need the 'ia5org' option at
the top level to modify the encoding: otherwise it will not be
interpreted properly.
Example:
certificatePolicies=ia5org,1.2.3.4,1.5.6.7.8,@polsect
[polsect]
policyIdentifier = 1.3.5.8
CPS.1="http://my.host.name/"
CPS.2="http://my.your.name/"
userNotice.1=@notice
[notice]
explicitText="Explicit Text Here"
organization="Organisation Name"
noticeNumbers=1,2,3,4
The ia5org option changes the type of the organization field. In
RFC2459 it can only be of type DisplayText. In RFC3280 IA5String is
also permissible. Some software (for example some versions of MSIE)
may require ia5org.
ASN1 type of explicitText can be specified by prepending UTF8, BMP or
VISIBLE prefix followed by colon. For example:
[notice]
explicitText="UTF8:Explicit Text Here"
Policy Constraints
This is a multi-valued extension which consisting of the names
requireExplicitPolicy or inhibitPolicyMapping and a non negative
integer value. At least one component must be present.
Example:
policyConstraints = requireExplicitPolicy:3
Inhibit Any Policy
This is a string extension whose value must be a non negative integer.
Example:
inhibitAnyPolicy = 2
Name Constraints
The name constraints extension is a multi-valued extension. The name
should begin with the word permitted or excluded followed by a ;. The
rest of the name and the value follows the syntax of subjectAltName
except email:copy is not supported and the IP form should consist of an
IP addresses and subnet mask separated by a /.
Examples:
nameConstraints=permitted;IP:192.168.0.0/255.255.0.0
nameConstraints=permitted;email:.somedomain.com
nameConstraints=excluded;email:.com
OCSP No Check
The OCSP No Check extension is a string extension but its value is
ignored.
Example:
noCheck = ignored
TLS Feature (aka Must Staple)
This is a multi-valued extension consisting of a list of TLS extension
identifiers. Each identifier may be a number (0..65535) or a supported
name. When a TLS client sends a listed extension, the TLS server is
expected to include that extension in its reply.
The supported names are: status_request and status_request_v2.
Example:
tlsfeature = status_request
DEPRECATED EXTENSIONS
The following extensions are non standard, Netscape specific and
largely obsolete. Their use in new applications is discouraged.
Netscape String extensions.
Netscape Comment (nsComment) is a string extension containing a comment
which will be displayed when the certificate is viewed in some
browsers.
Example:
nsComment = "Some Random Comment"
Other supported extensions in this category are: nsBaseUrl,
nsRevocationUrl, nsCaRevocationUrl, nsRenewalUrl, nsCaPolicyUrl and
nsSslServerName.
Netscape Certificate Type
This is a multi-valued extensions which consists of a list of flags to
be included. It was used to indicate the purposes for which a
certificate could be used. The basicConstraints, keyUsage and extended
key usage extensions are now used instead.
Acceptable values for nsCertType are: client, server, email, objsign,
reserved, sslCA, emailCA, objCA.
ARBITRARY EXTENSIONS
If an extension is not supported by the OpenSSL code then it must be
encoded using the arbitrary extension format. It is also possible to
use the arbitrary format for supported extensions. Extreme care should
be taken to ensure that the data is formatted correctly for the given
extension type.
There are two ways to encode arbitrary extensions.
The first way is to use the word ASN1 followed by the extension content
using the same syntax as ASN1_generate_nconf(3). For example:
1.2.3.4=critical,ASN1:UTF8String:Some random data
1.2.3.4=ASN1:SEQUENCE:seq_sect
[seq_sect]
field1 = UTF8:field1
field2 = UTF8:field2
It is also possible to use the word DER to include the raw encoded data
in any extension.
1.2.3.4=critical,DER:01:02:03:04
1.2.3.4=DER:01020304
The value following DER is a hex dump of the DER encoding of the
extension Any extension can be placed in this form to override the
default behaviour. For example:
basicConstraints=critical,DER:00:01:02:03
WARNINGS
There is no guarantee that a specific implementation will process a
given extension. It may therefore be sometimes possible to use
certificates for purposes prohibited by their extensions because a
specific application does not recognize or honour the values of the
relevant extensions.
The DER and ASN1 options should be used with caution. It is possible to
create totally invalid extensions if they are not used carefully.
NOTES
If an extension is multi-value and a field value must contain a comma
the long form must be used otherwise the comma would be misinterpreted
as a field separator. For example:
subjectAltName=URI:ldap://somehost.com/CN=foo,OU=bar
will produce an error but the equivalent form:
subjectAltName=@subject_alt_section
[subject_alt_section]
subjectAltName=URI:ldap://somehost.com/CN=foo,OU=bar
is valid.
Due to the behaviour of the OpenSSL conf library the same field name
can only occur once in a section. This means that:
subjectAltName=@alt_section
[alt_section]
email=steve@here
email=steve@there
will only recognize the last value. This can be worked around by using
the form:
[alt_section]
email.1=steve@here
email.2=steve@there
SEE ALSO
req(1), ca(1), x509(1), ASN1_generate_nconf(3)
COPYRIGHT
Copyright 2004-2020 The OpenSSL Project Authors. All Rights Reserved.
Licensed under the OpenSSL license (the "License"). You may not use
this file except in compliance with the License. You can obtain a copy
in the file LICENSE in the source distribution or at
<https://www.openssl.org/source/license.html>;.
1.1.1k 2021-03-25 X509V3_CONFIG(5)