DBI::SQL::Nano(3) User Contributed Perl Documentation DBI::SQL::Nano(3)
NAME
DBI::SQL::Nano - a very tiny SQL engine
SYNOPSIS
BEGIN { $ENV{DBI_SQL_NANO}=1 } # forces use of Nano rather than SQL::Statement
use DBI::SQL::Nano;
use Data::Dumper;
my $stmt = DBI::SQL::Nano::Statement->new(
"SELECT bar,baz FROM foo WHERE qux = 1"
) or die "Couldn't parse";
print Dumper $stmt;
DESCRIPTION
"DBI::SQL::Nano" is meant as a very minimal SQL engine for use in
situations where SQL::Statement is not available. In most situations
you are better off installing SQL::Statement although DBI::SQL::Nano
may be faster for some very simple tasks.
DBI::SQL::Nano, like SQL::Statement is primarily intended to provide a
SQL engine for use with some pure perl DBDs including DBD::DBM,
DBD::CSV, DBD::AnyData, and DBD::Excel. It is not of much use in and of
itself. You can dump out the structure of a parsed SQL statement, but
that is about it.
USAGE
Setting the DBI_SQL_NANO flag
By default, when a "DBD" uses "DBI::SQL::Nano", the module will look to
see if "SQL::Statement" is installed. If it is, SQL::Statement objects
are used. If SQL::Statement is not available, DBI::SQL::Nano objects
are used.
In some cases, you may wish to use DBI::SQL::Nano objects even if
SQL::Statement is available. To force usage of DBI::SQL::Nano objects
regardless of the availability of SQL::Statement, set the environment
variable DBI_SQL_NANO to 1.
You can set the environment variable in your shell prior to running
your script (with SET or EXPORT or whatever), or else you can set it in
your script by putting this at the top of the script:
BEGIN { $ENV{DBI_SQL_NANO} = 1 }
Supported SQL syntax
Here's a pseudo-BNF. Square brackets [] indicate optional items;
Angle brackets <> indicate items defined elsewhere in the BNF.
statement ::=
DROP TABLE [IF EXISTS] <table_name>
| CREATE TABLE <table_name> <col_def_list>
| INSERT INTO <table_name> [<insert_col_list>] VALUES <val_list>
| DELETE FROM <table_name> [<where_clause>]
| UPDATE <table_name> SET <set_clause> <where_clause>
| SELECT <select_col_list> FROM <table_name> [<where_clause>]
[<order_clause>]
the optional IF EXISTS clause ::=
* similar to MySQL - prevents errors when trying to drop
a table that doesn't exist
identifiers ::=
* table and column names should be valid SQL identifiers
* especially avoid using spaces and commas in identifiers
* note: there is no error checking for invalid names, some
will be accepted, others will cause parse failures
table_name ::=
* only one table (no multiple table operations)
* see identifier for valid table names
col_def_list ::=
* a parens delimited, comma-separated list of column names
* see identifier for valid column names
* column types and column constraints may be included but are ignored
e.g. these are all the same:
(id,phrase)
(id INT, phrase VARCHAR(40))
(id INT PRIMARY KEY, phrase VARCHAR(40) NOT NULL)
* you are *strongly* advised to put in column types even though
they are ignored ... it increases portability
insert_col_list ::=
* a parens delimited, comma-separated list of column names
* as in standard SQL, this is optional
select_col_list ::=
* a comma-separated list of column names
* or an asterisk denoting all columns
val_list ::=
* a parens delimited, comma-separated list of values which can be:
* placeholders (an unquoted question mark)
* numbers (unquoted numbers)
* column names (unquoted strings)
* nulls (unquoted word NULL)
* strings (delimited with single quote marks);
* note: leading and trailing percent mark (%) and underscore (_)
can be used as wildcards in quoted strings for use with
the LIKE and CLIKE operators
* note: escaped single quotation marks within strings are not
supported, neither are embedded commas, use placeholders instead
set_clause ::=
* a comma-separated list of column = value pairs
* see val_list for acceptable value formats
where_clause ::=
* a single "column/value <op> column/value" predicate, optionally
preceded by "NOT"
* note: multiple predicates combined with ORs or ANDs are not supported
* see val_list for acceptable value formats
* op may be one of:
< > >= <= = <> LIKE CLIKE IS
* CLIKE is a case insensitive LIKE
order_clause ::= column_name [ASC|DESC]
* a single column optional ORDER BY clause is supported
* as in standard SQL, if neither ASC (ascending) nor
DESC (descending) is specified, ASC becomes the default
TABLES
DBI::SQL::Nano::Statement operates on exactly one table. This table
will be opened by inherit from DBI::SQL::Nano::Statement and implements
the "open_table" method.
sub open_table ($$$$$)
{
...
return Your::Table->new( \%attributes );
}
DBI::SQL::Nano::Statement_ expects a rudimentary interface is
implemented by the table object, as well as SQL::Statement expects.
package Your::Table;
use vars qw(@ISA);
@ISA = qw(DBI::SQL::Nano::Table);
sub drop ($$) { ... }
sub fetch_row ($$$) { ... }
sub push_row ($$$) { ... }
sub push_names ($$$) { ... }
sub truncate ($$) { ... }
sub seek ($$$$) { ... }
The base class interfaces are provided by DBI::SQL::Nano::Table_ in
case of relying on DBI::SQL::Nano or SQL::Eval::Table (see SQL::Eval
for details) otherwise.
BUGS AND LIMITATIONS
There are no known bugs in DBI::SQL::Nano::Statement. If you find a one
and want to report, please see DBI for how to report bugs.
DBI::SQL::Nano::Statement is designed to provide a minimal subset for
executing SQL statements.
The most important limitation might be the restriction on one table per
statement. This implies, that no JOINs are supported and there cannot
be any foreign key relation between tables.
The where clause evaluation of DBI::SQL::Nano::Statement is very slow
(SQL::Statement uses a precompiled evaluation).
INSERT can handle only one row per statement. To insert multiple rows,
use placeholders as explained in DBI.
The DBI::SQL::Nano parser is very limited and does not support any
additional syntax such as brackets, comments, functions, aggregations
etc.
In contrast to SQL::Statement, temporary tables are not supported.
ACKNOWLEDGEMENTS
Tim Bunce provided the original idea for this module, helped me out of
the tangled trap of namespaces, and provided help and advice all along
the way. Although I wrote it from the ground up, it is based on Jochen
Wiedmann's original design of SQL::Statement, so much of the credit for
the API goes to him.
AUTHOR AND COPYRIGHT
This module is originally written by Jeff Zucker < jzucker AT cpan.org
>
This module is currently maintained by Jens Rehsack < jrehsack AT
cpan.org >
Copyright (C) 2010 by Jens Rehsack, all rights reserved. Copyright (C)
2004 by Jeff Zucker, all rights reserved.
You may freely distribute and/or modify this module under the terms of
either the GNU General Public License (GPL) or the Artistic License, as
specified in the Perl README file.
perl v5.16.3 2013-05-16 DBI::SQL::Nano(3)