Bit::Vector - phpMan

Vector(3)             User Contributed Perl Documentation            Vector(3)

NAME
       Bit::Vector - Efficient bit vector, set of integers and "big int" math
       library
SYNOPSIS
   OVERLOADED OPERATORS
       See Bit::Vector::Overload(3).
   MORE STRING IMPORT/EXPORT
       See Bit::Vector::String(3).
   CLASS METHODS
         Version
             $version = Bit::Vector->Version();
         Word_Bits
             $bits = Bit::Vector->Word_Bits();  #  bits in a machine word
         Long_Bits
             $bits = Bit::Vector->Long_Bits();  #  bits in an unsigned long
         new
             $vector = Bit::Vector->new($bits);  #  bit vector constructor
             @veclist = Bit::Vector->new($bits,$count);
         new_Hex
             $vector = Bit::Vector->new_Hex($bits,$string);
         new_Bin
             $vector = Bit::Vector->new_Bin($bits,$string);
         new_Dec
             $vector = Bit::Vector->new_Dec($bits,$string);
         new_Enum
             $vector = Bit::Vector->new_Enum($bits,$string);
         Concat_List
             $vector = Bit::Vector->Concat_List(@vectors);
   OBJECT METHODS
         new
             $vec2 = $vec1->new($bits);  #  alternative call of constructor
             @veclist = $vec->new($bits,$count);
         Shadow
             $vec2 = $vec1->Shadow();  #  new vector, same size but empty
         Clone
             $vec2 = $vec1->Clone();  #  new vector, exact duplicate
         Concat
             $vector = $vec1->Concat($vec2);
         Concat_List
             $vector = $vec1->Concat_List($vec2,$vec3,...);
         Size
             $bits = $vector->Size();
         Resize
             $vector->Resize($bits);
             $vector->Resize($vector->Size()+5);
             $vector->Resize($vector->Size()-5);
         Copy
             $vec2->Copy($vec1);
         Empty
             $vector->Empty();
         Fill
             $vector->Fill();
         Flip
             $vector->Flip();
         Primes
             $vector->Primes();  #  Sieve of Erathostenes
         Reverse
             $vec2->Reverse($vec1);
         Interval_Empty
             $vector->Interval_Empty($min,$max);
         Interval_Fill
             $vector->Interval_Fill($min,$max);
         Interval_Flip
             $vector->Interval_Flip($min,$max);
         Interval_Reverse
             $vector->Interval_Reverse($min,$max);
         Interval_Scan_inc
             if (($min,$max) = $vector->Interval_Scan_inc($start))
         Interval_Scan_dec
             if (($min,$max) = $vector->Interval_Scan_dec($start))
         Interval_Copy
             $vec2->Interval_Copy($vec1,$offset2,$offset1,$length);
         Interval_Substitute
             $vec2->Interval_Substitute($vec1,$off2,$len2,$off1,$len1);
         is_empty
             if ($vector->is_empty())
         is_full
             if ($vector->is_full())
         equal
             if ($vec1->equal($vec2))
         Lexicompare (unsigned)
             if ($vec1->Lexicompare($vec2) == 0)
             if ($vec1->Lexicompare($vec2) != 0)
             if ($vec1->Lexicompare($vec2) <  0)
             if ($vec1->Lexicompare($vec2) <= 0)
             if ($vec1->Lexicompare($vec2) >  0)
             if ($vec1->Lexicompare($vec2) >= 0)
         Compare (signed)
             if ($vec1->Compare($vec2) == 0)
             if ($vec1->Compare($vec2) != 0)
             if ($vec1->Compare($vec2) <  0)
             if ($vec1->Compare($vec2) <= 0)
             if ($vec1->Compare($vec2) >  0)
             if ($vec1->Compare($vec2) >= 0)
         to_Hex
             $string = $vector->to_Hex();
         from_Hex
             $vector->from_Hex($string);
         to_Bin
             $string = $vector->to_Bin();
         from_Bin
             $vector->from_Bin($string);
         to_Dec
             $string = $vector->to_Dec();
         from_Dec
             $vector->from_Dec($string);
         to_Enum
             $string = $vector->to_Enum();  #  e.g. "2,3,5-7,11,13-19"
         from_Enum
             $vector->from_Enum($string);
         Bit_Off
             $vector->Bit_Off($index);
         Bit_On
             $vector->Bit_On($index);
         bit_flip
             $bit = $vector->bit_flip($index);
         bit_test
         contains
             $bit = $vector->bit_test($index);
             $bit = $vector->contains($index);
             if ($vector->bit_test($index))
             if ($vector->contains($index))
         Bit_Copy
             $vector->Bit_Copy($index,$bit);
         LSB (least significant bit)
             $vector->LSB($bit);
         MSB (most significant bit)
             $vector->MSB($bit);
         lsb (least significant bit)
             $bit = $vector->lsb();
         msb (most significant bit)
             $bit = $vector->msb();
         rotate_left
             $carry = $vector->rotate_left();
         rotate_right
             $carry = $vector->rotate_right();
         shift_left
             $carry = $vector->shift_left($carry);
         shift_right
             $carry = $vector->shift_right($carry);
         Move_Left
             $vector->Move_Left($bits);  #  shift left "$bits" positions
         Move_Right
             $vector->Move_Right($bits);  #  shift right "$bits" positions
         Insert
             $vector->Insert($offset,$bits);
         Delete
             $vector->Delete($offset,$bits);
         increment
             $carry = $vector->increment();
         decrement
             $carry = $vector->decrement();
         inc
             $overflow = $vec2->inc($vec1);
         dec
             $overflow = $vec2->dec($vec1);
         add
             $carry = $vec3->add($vec1,$vec2,$carry);
             ($carry,$overflow) = $vec3->add($vec1,$vec2,$carry);
         subtract
             $carry = $vec3->subtract($vec1,$vec2,$carry);
             ($carry,$overflow) = $vec3->subtract($vec1,$vec2,$carry);
         Neg
         Negate
             $vec2->Neg($vec1);
             $vec2->Negate($vec1);
         Abs
         Absolute
             $vec2->Abs($vec1);
             $vec2->Absolute($vec1);
         Sign
             if ($vector->Sign() == 0)
             if ($vector->Sign() != 0)
             if ($vector->Sign() <  0)
             if ($vector->Sign() <= 0)
             if ($vector->Sign() >  0)
             if ($vector->Sign() >= 0)
         Multiply
             $vec3->Multiply($vec1,$vec2);
         Divide
             $quot->Divide($vec1,$vec2,$rest);
         GCD (Greatest Common Divisor)
             $vecgcd->GCD($veca,$vecb);
             $vecgcd->GCD($vecx,$vecy,$veca,$vecb);
         Power
             $vec3->Power($vec1,$vec2);
         Block_Store
             $vector->Block_Store($buffer);
         Block_Read
             $buffer = $vector->Block_Read();
         Word_Size
             $size = $vector->Word_Size();  #  number of words in "$vector"
         Word_Store
             $vector->Word_Store($offset,$word);
         Word_Read
             $word = $vector->Word_Read($offset);
         Word_List_Store
             $vector->Word_List_Store(@words);
         Word_List_Read
             @words = $vector->Word_List_Read();
         Word_Insert
             $vector->Word_Insert($offset,$count);
         Word_Delete
             $vector->Word_Delete($offset,$count);
         Chunk_Store
             $vector->Chunk_Store($chunksize,$offset,$chunk);
         Chunk_Read
             $chunk = $vector->Chunk_Read($chunksize,$offset);
         Chunk_List_Store
             $vector->Chunk_List_Store($chunksize,@chunks);
         Chunk_List_Read
             @chunks = $vector->Chunk_List_Read($chunksize);
         Index_List_Remove
             $vector->Index_List_Remove(@indices);
         Index_List_Store
             $vector->Index_List_Store(@indices);
         Index_List_Read
             @indices = $vector->Index_List_Read();
         Or
         Union
             $vec3->Or($vec1,$vec2);
             $set3->Union($set1,$set2);
         And
         Intersection
             $vec3->And($vec1,$vec2);
             $set3->Intersection($set1,$set2);
         AndNot
         Difference
             $vec3->AndNot($vec1,$vec2);
             $set3->Difference($set1,$set2);
         Xor
         ExclusiveOr
             $vec3->Xor($vec1,$vec2);
             $set3->ExclusiveOr($set1,$set2);
         Not
         Complement
             $vec2->Not($vec1);
             $set2->Complement($set1);
         subset
             if ($set1->subset($set2))  #  true if $set1 is subset of $set2
         Norm
             $norm = $set->Norm();
             $norm = $set->Norm2();
             $norm = $set->Norm3();
         Min
             $min = $set->Min();
         Max
             $max = $set->Max();
         Multiplication
             $matrix3->Multiplication($rows3,$cols3,
                             $matrix1,$rows1,$cols1,
                             $matrix2,$rows2,$cols2);
         Product
             $matrix3->Product($rows3,$cols3,
                      $matrix1,$rows1,$cols1,
                      $matrix2,$rows2,$cols2);
         Closure
             $matrix->Closure($rows,$cols);
         Transpose
             $matrix2->Transpose($rows2,$cols2,$matrix1,$rows1,$cols1);
IMPORTANT NOTES
       o Method naming conventions
         Method names completely in lower case indicate a boolean return
         value.
         (Except for the bit vector constructor method ""new()"", of course.)
       o Boolean values
         Boolean values in this module are always a numeric zero ("0") for
         "false" and a numeric one ("1") for "true".
       o Negative numbers
         All numeric input parameters passed to any of the methods in this
         module are regarded as being UNSIGNED (as opposed to the contents of
         the bit vectors themselves, which are usually considered to be
         SIGNED).
         As a consequence, whenever you pass a negative number as an argument
         to some method of this module, it will be treated as a (usually very
         large) positive number due to its internal two's complement binary
         representation, usually resulting in an "index out of range" error
         message and program abortion.
       o Bit order
         Note that bit vectors are stored least order bit and least order word
         first internally.
         I.e., bit #0 of any given bit vector corresponds to bit #0 of word #0
         in the array of machine words representing the bit vector.
         (Where word #0 comes first in memory, i.e., it is stored at the least
         memory address in the allocated block of memory holding the given bit
         vector.)
         Note however that machine words can be stored least order byte first
         or last, depending on your system's implementation.
         When you are exporting or importing a whole bit vector at once using
         the methods ""Block_Read()"" and ""Block_Store()"" (the only time in
         this module where this could make any difference), however, a
         conversion to and from "least order byte first" order is
         automatically supplied.
         In other words, what ""Block_Read()"" provides and what
         ""Block_Store()"" expects is always in "least order byte first"
         order, regardless of the order in which words are stored internally
         on your machine.
         This is to make sure that what you export on one machine using
         ""Block_Read()"" can always be read in correctly with
         ""Block_Store()"" on a different machine.
         Note further that whenever bit vectors are converted to and from
         (binary or hexadecimal) strings, the RIGHTMOST bit is always the
         LEAST SIGNIFICANT one, and the LEFTMOST bit is always the MOST
         SIGNIFICANT bit.
         This is because in our western culture, numbers are always
         represented in this way (least significant to most significant digits
         go from right to left).
         Of course this requires an internal reversion of order, which the
         corresponding conversion methods perform automatically (without any
         additional overhead, it's just a matter of starting the internal loop
         at the bottom or the top end).
       o "Word" related methods
         Note that all methods whose names begin with ""Word_"" are MACHINE-
         DEPENDENT!
         They depend on the size (number of bits) of an "unsigned int" (C
         type) on your machine.
         Therefore, you should only use these methods if you are ABSOLUTELY
         CERTAIN that portability of your code is not an issue!
         Note that you can use arbitrarily large chunks (i.e., fragments of
         bit vectors) of up to 32 bits IN A PORTABLE WAY using the methods
         whose names begin with ""Chunk_"".
       o Chunk sizes
         Note that legal chunk sizes for all methods whose names begin with
         ""Chunk_"" range from "1" to ""Bit::Vector->Long_Bits();"" bits ("0"
         is NOT allowed!).
         In order to make your programs portable, however, you shouldn't use
         chunk sizes larger than 32 bits, since this is the minimum size of an
         "unsigned long" (C type) on all systems, as prescribed by ANSI C.
       o Matching sizes
         In general, for methods involving several bit vectors at the same
         time, all bit vector arguments must have identical sizes (number of
         bits), or a fatal "size mismatch" error will occur.
         Exceptions from this rule are the methods ""Concat()"",
         ""Concat_List()"", ""Copy()"", ""Interval_Copy()"" and
         ""Interval_Substitute()"", where no conditions at all are imposed on
         the size of their bit vector arguments.
         In method ""Multiply()"", all three bit vector arguments must in
         principle obey the rule of matching sizes, but the bit vector in
         which the result of the multiplication is to be stored may be larger
         than the two bit vector arguments containing the factors for the
         multiplication.
         In method ""Power()"", the bit vector for the result must be the same
         size or greater than the base of the exponentiation term. The
         exponent can be any size.
       o Index ranges
         All indices for any given bits must lie between "0" and
         ""$vector->Size()-1"", or a fatal "index out of range" error will
         occur.
       o Object persistence
         Since version 6.5, "Bit::Vector" objects can be serialized and de-
         serialized automatically with "Storable", out-of-the-box, without
         requiring any further user action for this to work.
         This is also true for nested data structures (since version 6.8).
         See the Storable(3) documentation for more details.
DESCRIPTION
   OVERLOADED OPERATORS
       See Bit::Vector::Overload(3).
   MORE STRING IMPORT/EXPORT
       See Bit::Vector::String(3).
   CLASS METHODS
       o "$version = Bit::Vector->Version();"
         Returns the current version number of this module.
       o "$bits = Bit::Vector->Word_Bits();"
         Returns the number of bits of an "unsigned int" (C type) on your
         machine.
         (An "unsigned int" is also called a "machine word", hence the name of
         this method.)
       o "$bits = Bit::Vector->Long_Bits();"
         Returns the number of bits of an "unsigned long" (C type) on your
         machine.
       o "$vector = Bit::Vector->new($bits);"
         This is the bit vector constructor method.
         Call this method to create a new bit vector containing "$bits" bits
         (with indices ranging from "0" to ""$bits-1"").
         Note that - in contrast to previous versions - bit vectors of length
         zero (i.e., with "$bits = 0") are permitted now.
         The method returns a reference to the newly created bit vector.
         A new bit vector is always initialized so that all bits are cleared
         (turned off).
         An exception will be raised if the method is unable to allocate the
         necessary memory.
         Note that if you specify a negative number for "$bits" it will be
         interpreted as a large positive number due to its internal two's
         complement binary representation.
         In such a case, the bit vector constructor method will obediently
         attempt to create a bit vector of that size, probably resulting in an
         exception, as explained above.
       o "@veclist = Bit::Vector->new($bits,$count);"
         You can also create more than one bit vector at a time if you specify
         the optional second parameter "$count".
         The method returns a list of "$count" bit vectors which all have the
         same number of bits "$bits" (and which are all initialized, i.e., all
         bits are cleared).
         If "$count" is zero, an empty list is returned.
         If "$bits" is zero, a list of null-sized bit vectors is returned.
         Note again that if you specify a negative number for "$count" it will
         be interpreted as a large positive number due to its internal two's
         complement binary representation.
         In such a case, the bit vector constructor method will obediently
         attempt to create that many bit vectors, probably resulting in an
         exception ("out of memory").
       o "$vector = Bit::Vector->new_Hex($bits,$string);"
         This method is an alternative constructor which allows you to create
         a new bit vector object (with "$bits" bits) and to initialize it all
         in one go.
         The method internally first calls the bit vector constructor method
         ""new()"" and then passes the given string to the method
         ""from_Hex()"".
         However, this method is more efficient than performing these two
         steps separately: First because in this method, the memory area
         occupied by the new bit vector is not initialized to zeros (which is
         pointless in this case), and second because it saves you from the
         associated overhead of one additional method invocation.
         An exception will be raised if the necessary memory cannot be
         allocated (see the description of the method ""new()"" immediately
         above for possible causes) or if the given string cannot be converted
         successfully (see the description of the method ""from_Hex()""
         further below for details).
         In the latter case, the memory occupied by the new bit vector is
         released first (i.e., "free"d) before the exception is actually
         raised.
       o "$vector = Bit::Vector->new_Bin($bits,$string);"
         This method is an alternative constructor which allows you to create
         a new bit vector object (with "$bits" bits) and to initialize it all
         in one go.
         The method internally first calls the bit vector constructor method
         ""new()"" and then passes the given string to the method
         ""from_Bin()"".
         However, this method is more efficient than performing these two
         steps separately: First because in this method, the memory area
         occupied by the new bit vector is not initialized to zeros (which is
         pointless in this case), and second because it saves you from the
         associated overhead of one additional method invocation.
         An exception will be raised if the necessary memory cannot be
         allocated (see the description of the method ""new()"" above for
         possible causes) or if the given string cannot be converted
         successfully (see the description of the method ""from_Bin()""
         further below for details).
         In the latter case, the memory occupied by the new bit vector is
         released first (i.e., "free"d) before the exception is actually
         raised.
       o "$vector = Bit::Vector->new_Dec($bits,$string);"
         This method is an alternative constructor which allows you to create
         a new bit vector object (with "$bits" bits) and to initialize it all
         in one go.
         The method internally first calls the bit vector constructor method
         ""new()"" and then passes the given string to the method
         ""from_Dec()"".
         However, this method is more efficient than performing these two
         steps separately: First because in this method, ""new()"" does not
         initialize the memory area occupied by the new bit vector with zeros
         (which is pointless in this case, because ""from_Dec()"" will do it
         anyway), and second because it saves you from the associated overhead
         of one additional method invocation.
         An exception will be raised if the necessary memory cannot be
         allocated (see the description of the method ""new()"" above for
         possible causes) or if the given string cannot be converted
         successfully (see the description of the method ""from_Dec()""
         further below for details).
         In the latter case, the memory occupied by the new bit vector is
         released first (i.e., "free"d) before the exception is actually
         raised.
       o "$vector = Bit::Vector->new_Enum($bits,$string);"
         This method is an alternative constructor which allows you to create
         a new bit vector object (with "$bits" bits) and to initialize it all
         in one go.
         The method internally first calls the bit vector constructor method
         ""new()"" and then passes the given string to the method
         ""from_Enum()"".
         However, this method is more efficient than performing these two
         steps separately: First because in this method, ""new()"" does not
         initialize the memory area occupied by the new bit vector with zeros
         (which is pointless in this case, because ""from_Enum()"" will do it
         anyway), and second because it saves you from the associated overhead
         of one additional method invocation.
         An exception will be raised if the necessary memory cannot be
         allocated (see the description of the method ""new()"" above for
         possible causes) or if the given string cannot be converted
         successfully (see the description of the method ""from_Enum()""
         further below for details).
         In the latter case, the memory occupied by the new bit vector is
         released first (i.e., "free"d) before the exception is actually
         raised.
       o "$vector = Bit::Vector->Concat_List(@vectors);"
         This method creates a new vector containing all bit vectors from the
         argument list in concatenated form.
         The argument list may contain any number of arguments (including
         zero); the only condition is that all arguments must be bit vectors.
         There is no condition concerning the length (in number of bits) of
         these arguments.
         The vectors from the argument list are not changed in any way.
         If the argument list is empty or if all arguments have length zero,
         the resulting bit vector will also have length zero.
         Note that the RIGHTMOST bit vector from the argument list will become
         the LEAST significant part of the resulting bit vector, and the
         LEFTMOST bit vector from the argument list will become the MOST
         significant part of the resulting bit vector.
   OBJECT METHODS
       o "$vec2 = $vec1->new($bits);"
         "@veclist = $vec->new($bits);"
         This is an alternative way of calling the bit vector constructor
         method.
         Vector "$vec1" (or "$vec") is not affected by this, it just serves as
         an anchor for the method invocation mechanism.
         In fact ALL class methods in this module can be called this way, even
         though this is probably considered to be "politically incorrect" by
         OO ("object-orientation") aficionados. ;-)
         So even if you are too lazy to type ""Bit::Vector->"" instead of
         ""$vec1->"" (and even though laziness is - allegedly - a programmer's
         virtue ":-)"), maybe it is better not to use this feature if you
         don't want to get booed at. ;-)
       o "$vec2 = $vec1->Shadow();"
         Creates a NEW bit vector "$vec2" of the SAME SIZE as "$vec1" but
         which is EMPTY.
         Just like a shadow that has the same shape as the object it
         originates from, but is flat and has no volume, i.e., contains
         nothing.
       o "$vec2 = $vec1->Clone();"
         Creates a NEW bit vector "$vec2" of the SAME SIZE as "$vec1" which is
         an EXACT COPY of "$vec1".
       o "$vector = $vec1->Concat($vec2);"
         This method returns a new bit vector object which is the result of
         the concatenation of the contents of "$vec1" and "$vec2".
         Note that the contents of "$vec1" become the MOST significant part of
         the resulting bit vector, and "$vec2" the LEAST significant part.
         If both bit vector arguments have length zero, the resulting bit
         vector will also have length zero.
       o "$vector = $vec1->Concat_List($vec2,$vec3,...);"
         This is an alternative way of calling this (class) method as an
         object method.
         The method returns a new bit vector object which is the result of the
         concatenation of the contents of "$vec1 . $vec2 . $vec3 . ..."
         See the section "class methods" above for a detailed description of
         this method.
         Note that the argument list may be empty and that all arguments must
         be bit vectors if it isn't.
       o "$bits = $vector->Size();"
         Returns the size (number of bits) the given vector was created with
         (or ""Resize()""d to).
       o "$vector->Resize($bits);"
         Changes the size of the given vector to the specified number of bits.
         This method allows you to change the size of an existing bit vector,
         preserving as many bits from the old vector as will fit into the new
         one (i.e., all bits with indices smaller than the minimum of the
         sizes of both vectors, old and new).
         If the number of machine words needed to store the new vector is
         smaller than or equal to the number of words needed to store the old
         vector, the memory allocated for the old vector is reused for the new
         one, and only the relevant book-keeping information is adjusted
         accordingly.
         This means that even if the number of bits increases, new memory is
         not necessarily being allocated (i.e., if the old and the new number
         of bits fit into the same number of machine words).
         If the number of machine words needed to store the new vector is
         greater than the number of words needed to store the old vector, new
         memory is allocated for the new vector, the old vector is copied to
         the new one, the remaining bits in the new vector are cleared (turned
         off) and the old vector is deleted, i.e., the memory that was
         allocated for it is released.
         (An exception will be raised if the method is unable to allocate the
         necessary memory for the new vector.)
         As a consequence, if you decrease the size of a given vector so that
         it will use fewer machine words, and increase it again later so that
         it will use more words than immediately before but still less than
         the original vector, new memory will be allocated anyway because the
         information about the size of the original vector is lost whenever
         you resize it.
         Note also that if you specify a negative number for "$bits" it will
         be interpreted as a large positive number due to its internal two's
         complement binary representation.
         In such a case, "Resize()" will obediently attempt to create a bit
         vector of that size, probably resulting in an exception, as explained
         above.
         Finally, note that - in contrast to previous versions - resizing a
         bit vector to a size of zero bits (length zero) is now permitted.
       o "$vec2->Copy($vec1);"
         Copies the contents of bit vector "$vec1" to bit vector "$vec2".
         The previous contents of bit vector "$vec2" get overwritten, i.e.,
         are lost.
         Both vectors must exist beforehand, i.e., this method does not CREATE
         any new bit vector object.
         The two vectors may be of any size.
         If the source bit vector is larger than the target, this method will
         copy as much of the least significant bits of the source vector as
         will fit into the target vector, thereby discarding any extraneous
         most significant bits.
         BEWARE that this causes a brutal cutoff in the middle of your data,
         and it will also leave you with an almost unpredictable sign if
         subsequently the number in the target vector is going to be
         interpreted as a number! (You have been warned!)
         If the target bit vector is larger than the source, this method fills
         up the remaining most significant bits in the target bit vector with
         either 0's or 1's, depending on the sign (= the most significant bit)
         of the source bit vector. This is also known as "sign extension".
         This makes it possible to copy numbers from a smaller bit vector into
         a larger one while preserving the number's absolute value as well as
         its sign (due to the two's complement binary representation of
         numbers).
       o "$vector->Empty();"
         Clears all bits in the given vector.
       o "$vector->Fill();"
         Sets all bits in the given vector.
       o "$vector->Flip();"
         Flips (i.e., complements) all bits in the given vector.
       o "$vector->Primes();"
         Clears the given bit vector and sets all bits whose indices are prime
         numbers.
         This method uses the algorithm known as the "Sieve of Erathostenes"
         internally.
       o "$vec2->Reverse($vec1);"
         This method copies the given vector "$vec1" to the vector "$vec2",
         thereby reversing the order of all bits.
         I.e., the least significant bit of "$vec1" becomes the most
         significant bit of "$vec2", whereas the most significant bit of
         "$vec1" becomes the least significant bit of "$vec2", and so forth
         for all bits in between.
         Note that in-place processing is also possible, i.e., "$vec1" and
         "$vec2" may be identical.
         (Internally, this is the same as
         "$vec1->Interval_Reverse(0,$vec1->Size()-1);".)
       o "$vector->Interval_Empty($min,$max);"
         Clears all bits in the interval "[$min..$max]" (including both
         limits) in the given vector.
         "$min" and "$max" may have the same value; this is the same as
         clearing a single bit with ""Bit_Off()"" (but less efficient).
         Note that "$vector->Interval_Empty(0,$vector->Size()-1);" is the same
         as "$vector->Empty();" (but less efficient).
       o "$vector->Interval_Fill($min,$max);"
         Sets all bits in the interval "[$min..$max]" (including both limits)
         in the given vector.
         "$min" and "$max" may have the same value; this is the same as
         setting a single bit with ""Bit_On()"" (but less efficient).
         Note that "$vector->Interval_Fill(0,$vector->Size()-1);" is the same
         as "$vector->Fill();" (but less efficient).
       o "$vector->Interval_Flip($min,$max);"
         Flips (i.e., complements) all bits in the interval "[$min..$max]"
         (including both limits) in the given vector.
         "$min" and "$max" may have the same value; this is the same as
         flipping a single bit with ""bit_flip()"" (but less efficient).
         Note that "$vector->Interval_Flip(0,$vector->Size()-1);" is the same
         as "$vector->Flip();" and "$vector->Complement($vector);" (but less
         efficient).
       o "$vector->Interval_Reverse($min,$max);"
         Reverses the order of all bits in the interval "[$min..$max]"
         (including both limits) in the given vector.
         I.e., bits "$min" and "$max" swap places, and so forth for all bits
         in between.
         "$min" and "$max" may have the same value; this has no effect
         whatsoever, though.
       o "if (($min,$max) = $vector->Interval_Scan_inc($start))"
         Returns the minimum and maximum indices of the next contiguous block
         of set bits (i.e., bits in the "on" state).
         The search starts at index "$start" (i.e., "$min" >= "$start") and
         proceeds upwards (i.e., "$max" >= "$min"), thus repeatedly increments
         the search pointer "$start" (internally).
         Note though that the contents of the variable (or scalar literal
         value) "$start" is NOT altered. I.e., you have to set it to the
         desired value yourself prior to each call to ""Interval_Scan_inc()""
         (see also the example given below).
         Actually, the bit vector is not searched bit by bit, but one machine
         word at a time, in order to speed up execution (which means that this
         method is quite efficient).
         An empty list is returned if no such block can be found.
         Note that a single set bit (surrounded by cleared bits) is a valid
         block by this definition. In that case the return values for "$min"
         and "$max" are the same.
         Typical use:
             $start = 0;
             while (($start < $vector->Size()) &&
                 (($min,$max) = $vector->Interval_Scan_inc($start)))
             {
                 $start = $max + 2;
                 # do something with $min and $max
             }
       o "if (($min,$max) = $vector->Interval_Scan_dec($start))"
         Returns the minimum and maximum indices of the next contiguous block
         of set bits (i.e., bits in the "on" state).
         The search starts at index "$start" (i.e., "$max" <= "$start") and
         proceeds downwards (i.e., "$min" <= "$max"), thus repeatedly
         decrements the search pointer "$start" (internally).
         Note though that the contents of the variable (or scalar literal
         value) "$start" is NOT altered. I.e., you have to set it to the
         desired value yourself prior to each call to ""Interval_Scan_dec()""
         (see also the example given below).
         Actually, the bit vector is not searched bit by bit, but one machine
         word at a time, in order to speed up execution (which means that this
         method is quite efficient).
         An empty list is returned if no such block can be found.
         Note that a single set bit (surrounded by cleared bits) is a valid
         block by this definition. In that case the return values for "$min"
         and "$max" are the same.
         Typical use:
             $start = $vector->Size() - 1;
             while (($start >= 0) &&
                 (($min,$max) = $vector->Interval_Scan_dec($start)))
             {
                 $start = $min - 2;
                 # do something with $min and $max
             }
       o "$vec2->Interval_Copy($vec1,$offset2,$offset1,$length);"
         This method allows you to copy a stretch of contiguous bits (starting
         at any position "$offset1" you choose, with a length of "$length"
         bits) from a given "source" bit vector "$vec1" to another position
         "$offset2" in a "target" bit vector "$vec2".
         Note that the two bit vectors "$vec1" and "$vec2" do NOT need to have
         the same (matching) size!
         Consequently, any of the two terms ""$offset1 + $length"" and
         ""$offset2 + $length"" (or both) may exceed the actual length of its
         corresponding bit vector (""$vec1->Size()"" and ""$vec2->Size()"",
         respectively).
         In such a case, the "$length" parameter is automatically reduced
         internally so that both terms above are bounded by the number of bits
         of their corresponding bit vector.
         This may even result in a length of zero, in which case nothing is
         copied at all.
         (Of course the value of the "$length" parameter, supplied by you in
         the initial method call, may also be zero right from the start!)
         Note also that "$offset1" and "$offset2" must lie within the range
         "0" and, respectively, ""$vec1->Size()-1"" or ""$vec2->Size()-1"", or
         a fatal "offset out of range" error will occur.
         Note further that "$vec1" and "$vec2" may be identical, i.e., you may
         copy a stretch of contiguous bits from one part of a given bit vector
         to another part.
         The source and the target interval may even overlap, in which case
         the copying is automatically performed in ascending or descending
         order (depending on the direction of the copy - downwards or upwards
         in the bit vector, respectively) to handle this situation correctly,
         i.e., so that no bits are being overwritten before they have been
         copied themselves.
       o "$vec2->Interval_Substitute($vec1,$off2,$len2,$off1,$len1);"
         This method is (roughly) the same for bit vectors (i.e., arrays of
         booleans) as what the "splice" function in Perl is for lists (i.e.,
         arrays of scalars).
         (See "splice" in perlfunc for more details about this function.)
         The method allows you to substitute a stretch of contiguous bits
         (defined by a position (offset) "$off1" and a length of "$len1" bits)
         from a given "source" bit vector "$vec1" for a different stretch of
         contiguous bits (defined by a position (offset) "$off2" and a length
         of "$len2" bits) in another, "target" bit vector "$vec2".
         Note that the two bit vectors "$vec1" and "$vec2" do NOT need to have
         the same (matching) size!
         Note further that "$off1" and "$off2" must lie within the range "0"
         and, respectively, ""$vec1->Size()"" or ""$vec2->Size()"", or a fatal
         "offset out of range" error will occur.
         Alert readers will have noticed that these upper limits are NOT
         ""$vec1->Size()-1"" and ""$vec2->Size()-1"", as they would be for any
         other method in this module, but that these offsets may actually
         point to one position PAST THE END of the corresponding bit vector.
         This is necessary in order to make it possible to APPEND a given
         stretch of bits to the target bit vector instead of REPLACING
         something in it.
         For reasons of symmetry and generality, the same applies to the
         offset in the source bit vector, even though such an offset (one
         position past the end of the bit vector) does not serve any practical
         purpose there (but does not cause any harm either).
         (Actually this saves you from the need of testing for this special
         case, in certain circumstances.)
         Note that whenever the term ""$off1 + $len1"" exceeds the size
         ""$vec1->Size()"" of bit vector "$vec1" (or if ""$off2 + $len2""
         exceeds ""$vec2->Size()""), the corresponding length ("$len1" or
         "$len2", respectively) is automatically reduced internally so that
         ""$off1 + $len1 <= $vec1->Size()"" (and ""$off2 + $len2 <=
         $vec2->Size()"") holds.
         (Note that this does NOT alter the intended result, even though this
         may seem counter-intuitive at first!)
         This may even result in a length ("$len1" or "$len2") of zero.
         A length of zero for the interval in the SOURCE bit vector (""$len1
         == 0"") means that the indicated stretch of bits in the target bit
         vector (starting at position "$off2") is to be replaced by NOTHING,
         i.e., is to be DELETED.
         A length of zero for the interval in the TARGET bit vector ("$len2 ==
         0") means that NOTHING is replaced, and that the stretch of bits from
         the source bit vector is simply INSERTED into the target bit vector
         at the indicated position ("$off2").
         If both length parameters are zero, nothing is done at all.
         Note that in contrast to any other method in this module (especially
         ""Interval_Copy()"", ""Insert()"" and ""Delete()""), this method
         IMPLICITLY and AUTOMATICALLY adapts the length of the resulting bit
         vector as needed, as given by
                 $size = $vec2->Size();   #  before
                 $size += $len1 - $len2;  #  after
         (The only other method in this module that changes the size of a bit
         vector is the method ""Resize()"".)
         In other words, replacing a given interval of bits in the target bit
         vector with a longer or shorter stretch of bits from the source bit
         vector, or simply inserting (""$len2 == 0"") a stretch of bits into
         or deleting (""$len1 == 0"") an interval of bits from the target bit
         vector will automatically increase or decrease, respectively, the
         size of the target bit vector accordingly.
         For the sake of generality, this may even result in a bit vector with
         a size of zero (containing no bits at all).
         This is also the reason why bit vectors of length zero are permitted
         in this module in the first place, starting with version 5.0.
         Finally, note that "$vec1" and "$vec2" may be identical, i.e., in-
         place processing is possible.
         (If you think about that for a while or if you look at the code, you
         will see that this is far from trivial!)
       o "if ($vector->is_empty())"
         Tests whether the given bit vector is empty, i.e., whether ALL of its
         bits are cleared (in the "off" state).
         In "big integer" arithmetic, this is equivalent to testing whether
         the number stored in the bit vector is zero ("0").
         Returns "true" ("1") if the bit vector is empty and "false" ("0")
         otherwise.
         Note that this method also returns "true" ("1") if the given bit
         vector has a length of zero, i.e., if it contains no bits at all.
       o "if ($vector->is_full())"
         Tests whether the given bit vector is full, i.e., whether ALL of its
         bits are set (in the "on" state).
         In "big integer" arithmetic, this is equivalent to testing whether
         the number stored in the bit vector is minus one ("-1").
         Returns "true" ("1") if the bit vector is full and "false" ("0")
         otherwise.
         If the given bit vector has a length of zero (i.e., if it contains no
         bits at all), this method returns "false" ("0").
       o "if ($vec1->equal($vec2))"
         Tests the two given bit vectors for equality.
         Returns "true" ("1") if the two bit vectors are exact copies of one
         another and "false" ("0") otherwise.
       o "$cmp = $vec1->Lexicompare($vec2);"
         Compares the two given bit vectors, which are regarded as UNSIGNED
         numbers in binary representation.
         The method returns ""-1"" if the first bit vector is smaller than the
         second bit vector, "0" if the two bit vectors are exact copies of one
         another and "1" if the first bit vector is greater than the second
         bit vector.
       o "$cmp = $vec1->Compare($vec2);"
         Compares the two given bit vectors, which are regarded as SIGNED
         numbers in binary representation.
         The method returns ""-1"" if the first bit vector is smaller than the
         second bit vector, "0" if the two bit vectors are exact copies of one
         another and "1" if the first bit vector is greater than the second
         bit vector.
       o "$string = $vector->to_Hex();"
         Returns a hexadecimal string representing the given bit vector.
         Note that this representation is quite compact, in that it only needs
         at most twice the number of bytes needed to store the bit vector
         itself, internally.
         Note also that since a hexadecimal digit is always worth four bits,
         the length of the resulting string is always a multiple of four bits,
         regardless of the true length (in bits) of the given bit vector.
         Finally, note that the LEAST significant hexadecimal digit is located
         at the RIGHT end of the resulting string, and the MOST significant
         digit at the LEFT end.
       o "$vector->from_Hex($string);"
         Allows to read in the contents of a bit vector from a hexadecimal
         string, such as returned by the method ""to_Hex()"" (see above).
         Remember that the least significant bits are always to the right of a
         hexadecimal string, and the most significant bits to the left.
         Therefore, the string is actually read in from right to left while
         the bit vector is filled accordingly, 4 bits at a time, starting with
         the least significant bits and going upward to the most significant
         bits.
         If the given string contains less hexadecimal digits than are needed
         to completely fill the given bit vector, the remaining (most
         significant) bits are all cleared.
         This also means that, even if the given string does not contain
         enough digits to completely fill the given bit vector, the previous
         contents of the bit vector are erased completely.
         If the given string is longer than it needs to fill the given bit
         vector, the superfluous characters are simply ignored.
         (In fact they are ignored completely - they are not even checked for
         proper syntax. See also below for more about that.)
         This behaviour is intentional so that you may read in the string
         representing one bit vector into another bit vector of different
         size, i.e., as much of it as will fit.
         If during the process of reading the given string any character is
         encountered which is not a hexadecimal digit, a fatal syntax error
         ensues ("input string syntax error").
       o "$string = $vector->to_Bin();"
         Returns a binary string representing the given bit vector.
         Example:
           $vector = Bit::Vector->new(8);
           $vector->Primes();
           $string = $vector->to_Bin();
           print "'$string'\n";
         This prints:
           '10101100'
         (Bits #7, #5, #3 and #2 are set.)
         Note that the LEAST significant bit is located at the RIGHT end of
         the resulting string, and the MOST significant bit at the LEFT end.
       o "$vector->from_Bin($string);"
         This method allows you to read in the contents of a bit vector from a
         binary string, such as returned by the method ""to_Bin()"" (see
         above).
         Note that this method assumes that the LEAST significant bit is
         located at the RIGHT end of the binary string, and the MOST
         significant bit at the LEFT end. Therefore, the string is actually
         read in from right to left while the bit vector is filled
         accordingly, one bit at a time, starting with the least significant
         bit and going upward to the most significant bit.
         If the given string contains less binary digits ("0" and "1") than
         are needed to completely fill the given bit vector, the remaining
         (most significant) bits are all cleared.
         This also means that, even if the given string does not contain
         enough digits to completely fill the given bit vector, the previous
         contents of the bit vector are erased completely.
         If the given string is longer than it needs to fill the given bit
         vector, the superfluous characters are simply ignored.
         (In fact they are ignored completely - they are not even checked for
         proper syntax. See also below for more about that.)
         This behaviour is intentional so that you may read in the string
         representing one bit vector into another bit vector of different
         size, i.e., as much of it as will fit.
         If during the process of reading the given string any character is
         encountered which is not either "0" or "1", a fatal syntax error
         ensues ("input string syntax error").
       o "$string = $vector->to_Dec();"
         This method returns a string representing the contents of the given
         bit vector converted to decimal (base 10).
         Note that this method assumes the given bit vector to be SIGNED (and
         to contain a number in two's complement binary representation).
         Consequently, whenever the most significant bit of the given bit
         vector is set, the number stored in it is regarded as being NEGATIVE.
         The resulting string can be fed into ""from_Dec()"" (see below) in
         order to copy the contents of this bit vector to another one (or to
         restore the contents of this one). This is not advisable, though,
         since this would be very inefficient (there are much more efficient
         methods for storing and copying bit vectors in this module).
         Note that such conversion from binary to decimal is inherently slow
         since the bit vector has to be repeatedly divided by 10 with
         remainder until the quotient becomes 0 (each remainder in turn
         represents a single decimal digit of the resulting string).
         This is also true for the implementation of this method in this
         module, even though a considerable effort has been made to speed it
         up: instead of repeatedly dividing by 10, the bit vector is
         repeatedly divided by the largest power of 10 that will fit into a
         machine word. The remainder is then repeatedly divided by 10 using
         only machine word arithmetics, which is much faster than dividing the
         whole bit vector ("divide and rule" principle).
         According to my own measurements, this resulted in an 8-fold speed
         increase over the straightforward approach.
         Still, conversion to decimal should be used only where absolutely
         necessary.
         Keep the resulting string stored in some variable if you need it
         again, instead of converting the bit vector all over again.
         Beware that if you set the configuration for overloaded operators to
         "output=decimal", this method will be called for every bit vector
         enclosed in double quotes!
       o "$vector->from_Dec($string);"
         This method allows you to convert a given decimal number, which may
         be positive or negative, into two's complement binary representation,
         which is then stored in the given bit vector.
         The decimal number should always be provided as a string, to avoid
         possible truncation (due to the limited precision of integers in
         Perl) or formatting (due to Perl's use of scientific notation for
         large numbers), which would lead to errors.
         If the binary representation of the given decimal number is too big
         to fit into the given bit vector (if the given bit vector does not
         contain enough bits to hold it), a fatal "numeric overflow error"
         occurs.
         If the input string contains other characters than decimal digits
         ("0-9") and an optional leading sign (""+"" or ""-""), a fatal "input
         string syntax error" occurs.
         Beware that large positive numbers which cause the most significant
         bit to be set (e.g. "255" in a bit vector with 8 bits) will be
         printed as negative numbers when converted back to decimal using the
         method "to_Dec()" (e.g.  "-1", in our example), because numbers with
         the most significant bit set are considered to be negative in two's
         complement binary representation.
         Note also that while it is possible to thusly enter negative numbers
         as large positive numbers (e.g. "255" for "-1" in a bit vector with 8
         bits), the contrary isn't, i.e., you cannot enter "-255" for "+1", in
         our example.  A fatal "numeric overflow error" will occur if you try
         to do so.
         If possible program abortion is unwanted or intolerable, use
         ""eval"", like this:
           eval { $vector->from_Dec("1152921504606846976"); };
           if ($@)
           {
               # an error occurred
           }
         There are four possible error messages:
           if ($@ =~ /item is not a string/)
           if ($@ =~ /input string syntax error/)
           if ($@ =~ /numeric overflow error/)
           if ($@ =~ /unable to allocate memory/)
         Note that the conversion from decimal to binary is costly in terms of
         processing time, since a lot of multiplications have to be carried
         out (in principle, each decimal digit must be multiplied with the
         binary representation of the power of 10 corresponding to its
         position in the decimal number, i.e., 1, 10, 100, 1000, 10000 and so
         on).
         This is not as time consuming as the opposite conversion, from binary
         to decimal (where successive divisions have to be carried out, which
         are even more expensive than multiplications), but still noticeable.
         Again (as in the case of ""to_Dec()""), the implementation of this
         method in this module uses the principle of "divide and rule" in
         order to speed up the conversion, i.e., as many decimal digits as
         possible are first accumulated (converted) in a machine word and only
         then stored in the given bit vector.
         Even so, use this method only where absolutely necessary if speed is
         an important consideration in your application.
         Beware that if you set the configuration for overloaded operators to
         "input=decimal", this method will be called for every scalar operand
         you use!
       o "$string = $vector->to_Enum();"
         Converts the given bit vector or set into an enumeration of single
         indices and ranges of indices (".newsrc" style), representing the
         bits that are set ("1") in the bit vector.
         Example:
           $vector = Bit::Vector->new(20);
           $vector->Bit_On(2);
           $vector->Bit_On(3);
           $vector->Bit_On(11);
           $vector->Interval_Fill(5,7);
           $vector->Interval_Fill(13,19);
           print "'", $vector->to_Enum(), "'\n";
         which prints
           '2,3,5-7,11,13-19'
         If the given bit vector is empty, the resulting string will also be
         empty.
         Note, by the way, that the above example can also be written a little
         handier, perhaps, as follows:
           Bit::Vector->Configuration("out=enum");
           $vector = Bit::Vector->new(20);
           $vector->Index_List_Store(2,3,5,6,7,11,13,14,15,16,17,18,19);
           print "'$vector'\n";
       o "$vector->from_Enum($string);"
         This method first empties the given bit vector and then tries to set
         the bits and ranges of bits specified in the given string.
         The string "$string" must only contain unsigned integers or ranges of
         integers (two unsigned integers separated by a dash "-"), separated
         by commas (",").
         All other characters are disallowed (including white space!)  and
         will lead to a fatal "input string syntax error".
         In each range, the first integer (the lower limit of the range) must
         always be less than or equal to the second integer (the upper limit),
         or a fatal "minimum > maximum index" error occurs.
         All integers must lie in the permitted range for the given bit
         vector, i.e., they must lie between "0" and ""$vector->Size()-1"".
         If this condition is not met, a fatal "index out of range" error
         occurs.
         If possible program abortion is unwanted or intolerable, use
         ""eval"", like this:
           eval { $vector->from_Enum("2,3,5-7,11,13-19"); };
           if ($@)
           {
               # an error occurred
           }
         There are four possible error messages:
           if ($@ =~ /item is not a string/)
           if ($@ =~ /input string syntax error/)
           if ($@ =~ /index out of range/)
           if ($@ =~ /minimum > maximum index/)
         Note that the order of the indices and ranges is irrelevant, i.e.,
           eval { $vector->from_Enum("11,5-7,3,13-19,2"); };
         results in the same vector as in the example above.
         Ranges and indices may also overlap.
         This is because each (single) index in the string is passed to the
         method ""Bit_On()"", internally, and each range to the method
         ""Interval_Fill()"".
         This means that the resulting bit vector is just the union of all the
         indices and ranges specified in the given string.
       o "$vector->Bit_Off($index);"
         Clears the bit with index "$index" in the given vector.
       o "$vector->Bit_On($index);"
         Sets the bit with index "$index" in the given vector.
       o "$vector->bit_flip($index)"
         Flips (i.e., complements) the bit with index "$index" in the given
         vector.
         Moreover, this method returns the NEW state of the bit in question,
         i.e., it returns "0" if the bit is cleared or "1" if the bit is set
         (AFTER flipping it).
       o "if ($vector->bit_test($index))"
         "if ($vector->contains($index))"
         Returns the current state of the bit with index "$index" in the given
         vector, i.e., returns "0" if it is cleared (in the "off" state) or
         "1" if it is set (in the "on" state).
       o "$vector->Bit_Copy($index,$bit);"
         Sets the bit with index "$index" in the given vector either to "0" or
         "1" depending on the boolean value "$bit".
       o "$vector->LSB($bit);"
         Allows you to set the least significant bit in the given bit vector
         to the value given by the boolean parameter "$bit".
         This is a (faster) shortcut for ""$vector->Bit_Copy(0,$bit);"".
       o "$vector->MSB($bit);"
         Allows you to set the most significant bit in the given bit vector to
         the value given by the boolean parameter "$bit".
         This is a (faster) shortcut for
         ""$vector->Bit_Copy($vector->Size()-1,$bit);"".
       o "$bit = $vector->lsb();"
         Returns the least significant bit of the given bit vector.
         This is a (faster) shortcut for ""$bit = $vector->bit_test(0);"".
       o "$bit = $vector->msb();"
         Returns the most significant bit of the given bit vector.
         This is a (faster) shortcut for ""$bit =
         $vector->bit_test($vector->Size()-1);"".
       o "$carry_out = $vector->rotate_left();"
           carry             MSB           vector:           LSB
            out:
           +---+            +---+---+---+---     ---+---+---+---+
           |   |  <---+---  |   |   |   |    ...    |   |   |   |  <---+
           +---+      |     +---+---+---+---     ---+---+---+---+      |
                      |                                                |
                      +------------------------------------------------+
         The least significant bit (LSB) is the bit with index "0", the most
         significant bit (MSB) is the bit with index ""$vector->Size()-1"".
       o "$carry_out = $vector->rotate_right();"
                   MSB           vector:           LSB            carry
                                                                   out:
                  +---+---+---+---     ---+---+---+---+           +---+
           +--->  |   |   |   |    ...    |   |   |   |  ---+---> |   |
           |      +---+---+---+---     ---+---+---+---+     |     +---+
           |                                                |
           +------------------------------------------------+
         The least significant bit (LSB) is the bit with index "0", the most
         significant bit (MSB) is the bit with index ""$vector->Size()-1"".
       o "$carry_out = $vector->shift_left($carry_in);"
           carry         MSB           vector:           LSB         carry
            out:                                                      in:
           +---+        +---+---+---+---     ---+---+---+---+        +---+
           |   |  <---  |   |   |   |    ...    |   |   |   |  <---  |   |
           +---+        +---+---+---+---     ---+---+---+---+        +---+
         The least significant bit (LSB) is the bit with index "0", the most
         significant bit (MSB) is the bit with index ""$vector->Size()-1"".
       o "$carry_out = $vector->shift_right($carry_in);"
           carry         MSB           vector:           LSB         carry
            in:                                                       out:
           +---+        +---+---+---+---     ---+---+---+---+        +---+
           |   |  --->  |   |   |   |    ...    |   |   |   |  --->  |   |
           +---+        +---+---+---+---     ---+---+---+---+        +---+
         The least significant bit (LSB) is the bit with index "0", the most
         significant bit (MSB) is the bit with index ""$vector->Size()-1"".
       o "$vector->Move_Left($bits);"
         Shifts the given bit vector left by "$bits" bits, i.e., inserts
         "$bits" new bits at the lower end (least significant bit) of the bit
         vector, moving all other bits up by "$bits" places, thereby losing
         the "$bits" most significant bits.
         The inserted new bits are all cleared (set to the "off" state).
         This method does nothing if "$bits" is equal to zero.
         Beware that the whole bit vector is cleared WITHOUT WARNING if
         "$bits" is greater than or equal to the size of the given bit vector!
         In fact this method is equivalent to
           for ( $i = 0; $i < $bits; $i++ ) { $vector->shift_left(0); }
         except that it is much more efficient (for "$bits" greater than or
         equal to the number of bits in a machine word on your system) than
         this straightforward approach.
       o "$vector->Move_Right($bits);"
         Shifts the given bit vector right by "$bits" bits, i.e., deletes the
         "$bits" least significant bits of the bit vector, moving all other
         bits down by "$bits" places, thereby creating "$bits" new bits at the
         upper end (most significant bit) of the bit vector.
         These new bits are all cleared (set to the "off" state).
         This method does nothing if "$bits" is equal to zero.
         Beware that the whole bit vector is cleared WITHOUT WARNING if
         "$bits" is greater than or equal to the size of the given bit vector!
         In fact this method is equivalent to
           for ( $i = 0; $i < $bits; $i++ ) { $vector->shift_right(0); }
         except that it is much more efficient (for "$bits" greater than or
         equal to the number of bits in a machine word on your system) than
         this straightforward approach.
       o "$vector->Insert($offset,$bits);"
         This method inserts "$bits" fresh new bits at position "$offset" in
         the given bit vector.
         The "$bits" most significant bits are lost, and all bits starting
         with bit number "$offset" up to and including bit number
         ""$vector->Size()-$bits-1"" are moved up by "$bits" places.
         The now vacant "$bits" bits starting at bit number "$offset" (up to
         and including bit number ""$offset+$bits-1"") are then set to zero
         (cleared).
         Note that this method does NOT increase the size of the given bit
         vector, i.e., the bit vector is NOT extended at its upper end to
         "rescue" the "$bits" uppermost (most significant) bits - instead,
         these bits are lost forever.
         If you don't want this to happen, you have to increase the size of
         the given bit vector EXPLICITLY and BEFORE you perform the "Insert"
         operation, with a statement such as the following:
           $vector->Resize($vector->Size() + $bits);
         Or use the method ""Interval_Substitute()"" instead of ""Insert()"",
         which performs automatic growing and shrinking of its target bit
         vector.
         Note also that "$offset" must lie in the permitted range between "0"
         and ""$vector->Size()-1"", or a fatal "offset out of range" error
         will occur.
         If the term ""$offset + $bits"" exceeds ""$vector->Size()-1"", all
         the bits starting with bit number "$offset" up to bit number
         ""$vector->Size()-1"" are simply cleared.
       o "$vector->Delete($offset,$bits);"
         This method deletes, i.e., removes the bits starting at position
         "$offset" up to and including bit number ""$offset+$bits-1"" from the
         given bit vector.
         The remaining uppermost bits (starting at position ""$offset+$bits""
         up to and including bit number ""$vector->Size()-1"") are moved down
         by "$bits" places.
         The now vacant uppermost (most significant) "$bits" bits are then set
         to zero (cleared).
         Note that this method does NOT decrease the size of the given bit
         vector, i.e., the bit vector is NOT clipped at its upper end to "get
         rid of" the vacant "$bits" uppermost bits.
         If you don't want this, i.e., if you want the bit vector to shrink
         accordingly, you have to do so EXPLICITLY and AFTER the "Delete"
         operation, with a couple of statements such as these:
           $size = $vector->Size();
           if ($bits > $size) { $bits = $size; }
           $vector->Resize($size - $bits);
         Or use the method ""Interval_Substitute()"" instead of ""Delete()"",
         which performs automatic growing and shrinking of its target bit
         vector.
         Note also that "$offset" must lie in the permitted range between "0"
         and ""$vector->Size()-1"", or a fatal "offset out of range" error
         will occur.
         If the term ""$offset + $bits"" exceeds ""$vector->Size()-1"", all
         the bits starting with bit number "$offset" up to bit number
         ""$vector->Size()-1"" are simply cleared.
       o "$carry = $vector->increment();"
         This method increments the given bit vector.
         Note that this method regards bit vectors as being unsigned, i.e.,
         the largest possible positive number is directly followed by the
         smallest possible (or greatest possible, speaking in absolute terms)
         negative number:
           before:  2 ^ (b-1) - 1    (= "0111...1111")
           after:   2 ^ (b-1)        (= "1000...0000")
         where ""b"" is the number of bits of the given bit vector.
         The method returns "false" ("0") in all cases except when a carry
         over occurs (in which case it returns "true", i.e., "1"), which
         happens when the number "1111...1111" is incremented, which gives
         "0000...0000" plus a carry over to the next higher (binary) digit.
         This can be used for the terminating condition of a "while" loop, for
         instance, in order to cycle through all possible values the bit
         vector can assume.
       o "$carry = $vector->decrement();"
         This method decrements the given bit vector.
         Note that this method regards bit vectors as being unsigned, i.e.,
         the smallest possible (or greatest possible, speaking in absolute
         terms) negative number is directly followed by the largest possible
         positive number:
           before:  2 ^ (b-1)        (= "1000...0000")
           after:   2 ^ (b-1) - 1    (= "0111...1111")
         where ""b"" is the number of bits of the given bit vector.
         The method returns "false" ("0") in all cases except when a carry
         over occurs (in which case it returns "true", i.e., "1"), which
         happens when the number "0000...0000" is decremented, which gives
         "1111...1111" minus a carry over to the next higher (binary) digit.
         This can be used for the terminating condition of a "while" loop, for
         instance, in order to cycle through all possible values the bit
         vector can assume.
       o "$overflow = $vec2->inc($vec1);"
         This method copies the contents of bit vector "$vec1" to bit vector
         "$vec2" and increments the copy (not the original).
         If by incrementing the number its sign becomes invalid, the return
         value ("overflow" flag) will be true ("1"), or false ("0") if not.
         (See the description of the method "add()" below for a more in-depth
         explanation of what "overflow" means).
         Note that in-place operation is also possible, i.e., "$vec1" and
         "$vec2" may be identical.
       o "$overflow = $vec2->dec($vec1);"
         This method copies the contents of bit vector "$vec1" to bit vector
         "$vec2" and decrements the copy (not the original).
         If by decrementing the number its sign becomes invalid, the return
         value ("overflow" flag) will be true ("1"), or false ("0") if not.
         (See the description of the method "subtract()" below for a more in-
         depth explanation of what "overflow" means).
         Note that in-place operation is also possible, i.e., "$vec1" and
         "$vec2" may be identical.
       o "$carry = $vec3->add($vec1,$vec2,$carry);"
         "($carry,$overflow) = $vec3->add($vec1,$vec2,$carry);"
         This method adds the two numbers contained in bit vector "$vec1" and
         "$vec2" with carry "$carry" and stores the result in bit vector
         "$vec3".
         I.e.,
                     $vec3 = $vec1 + $vec2 + $carry
         Note that the "$carry" parameter is a boolean value, i.e., only its
         least significant bit is taken into account. (Think of it as though
         ""$carry &= 1;"" was always executed internally.)
         In scalar context, the method returns a boolean value which indicates
         if a carry over (to the next higher bit position) has occured. In
         list context, the method returns the carry and the overflow flag (in
         this order).
         The overflow flag is true ("1") if the sign (i.e., the most
         significant bit) of the result is wrong. This can happen when adding
         two very large positive numbers or when adding two (by their absolute
         value) very large negative numbers. See also further below.
         The carry in- and output is needed mainly for cascading, i.e., to add
         numbers that are fragmented into several pieces.
         Example:
           # initialize
           for ( $i = 0; $i < $n; $i++ )
           {
               $a[$i] = Bit::Vector->new($bits);
               $b[$i] = Bit::Vector->new($bits);
               $c[$i] = Bit::Vector->new($bits);
           }
           # fill @a and @b
           # $a[  0 ] is low order part,
           # $a[$n-1] is high order part,
           # and same for @b
           # add
           $carry = 0;
           for ( $i = 0; $i < $n; $i++ )
           {
               $carry = $c[$i]->add($a[$i],$b[$i],$carry);
           }
         Note that it makes no difference to this method whether the numbers
         in "$vec1" and "$vec2" are unsigned or signed (i.e., in two's
         complement binary representation).
         Note however that the return value (carry flag) is not meaningful
         when the numbers are SIGNED.
         Moreover, when the numbers are signed, a special type of error can
         occur which is commonly called an "overflow error".
         An overflow error occurs when the sign of the result (its most
         significant bit) is flipped (i.e., falsified) by a carry over from
         the next-lower bit position ("MSB-1").
         In fact matters are a bit more complicated than that: the overflow
         flag is set to "true" whenever there is a carry over from bit
         position MSB-1 to the most significant bit (MSB) but no carry over
         from the MSB to the output carry flag, or vice-versa, i.e., when
         there is no carry over from bit position MSB-1 to the most
         significant bit (MSB) but a carry over to the output carry flag.
         Thus the overflow flag is the result of an exclusive-or operation
         between incoming and outgoing carry over at the most significant bit
         position.
       o "$carry = $vec3->subtract($vec1,$vec2,$carry);"
         "($carry,$overflow) = $vec3->subtract($vec1,$vec2,$carry);"
         This method subtracts the two numbers contained in bit vector "$vec1"
         and "$vec2" with carry "$carry" and stores the result in bit vector
         "$vec3".
         I.e.,
                     $vec3 = $vec1 - $vec2 - $carry
         Note that the "$carry" parameter is a boolean value, i.e., only its
         least significant bit is taken into account. (Think of it as though
         ""$carry &= 1;"" was always executed internally.)
         In scalar context, the method returns a boolean value which indicates
         if a carry over (to the next higher bit position) has occured. In
         list context, the method returns the carry and the overflow flag (in
         this order).
         The overflow flag is true ("1") if the sign (i.e., the most
         significant bit) of the result is wrong. This can happen when
         subtracting a very large negative number from a very large positive
         number or vice-versa. See also further below.
         The carry in- and output is needed mainly for cascading, i.e., to
         subtract numbers that are fragmented into several pieces.
         Example:
           # initialize
           for ( $i = 0; $i < $n; $i++ )
           {
               $a[$i] = Bit::Vector->new($bits);
               $b[$i] = Bit::Vector->new($bits);
               $c[$i] = Bit::Vector->new($bits);
           }
           # fill @a and @b
           # $a[  0 ] is low order part,
           # $a[$n-1] is high order part,
           # and same for @b
           # subtract
           $carry = 0;
           for ( $i = 0; $i < $n; $i++ )
           {
               $carry = $c[$i]->subtract($a[$i],$b[$i],$carry);
           }
         Note that it makes no difference to this method whether the numbers
         in "$vec1" and "$vec2" are unsigned or signed (i.e., in two's
         complement binary representation).
         Note however that the return value (carry flag) is not meaningful
         when the numbers are SIGNED.
         Moreover, when the numbers are signed, a special type of error can
         occur which is commonly called an "overflow error".
         An overflow error occurs when the sign of the result (its most
         significant bit) is flipped (i.e., falsified) by a carry over from
         the next-lower bit position ("MSB-1").
         In fact matters are a bit more complicated than that: the overflow
         flag is set to "true" whenever there is a carry over from bit
         position MSB-1 to the most significant bit (MSB) but no carry over
         from the MSB to the output carry flag, or vice-versa, i.e., when
         there is no carry over from bit position MSB-1 to the most
         significant bit (MSB) but a carry over to the output carry flag.
         Thus the overflow flag is the result of an exclusive-or operation
         between incoming and outgoing carry over at the most significant bit
         position.
       o "$vec2->Neg($vec1);"
         "$vec2->Negate($vec1);"
         This method calculates the two's complement of the number in bit
         vector "$vec1" and stores the result in bit vector "$vec2".
         Calculating the two's complement of a given number in binary
         representation consists of inverting all bits and incrementing the
         result by one.
         This is the same as changing the sign of the given number from ""+""
         to ""-"" or vice-versa. In other words, applying this method twice on
         a given number yields the original number again.
         Note that in-place processing is also possible, i.e., "$vec1" and
         "$vec2" may be identical.
         Most importantly, beware that this method produces a counter-
         intuitive result if the number contained in bit vector "$vec1" is "2
         ^ (n-1)" (i.e., "1000...0000"), where ""n"" is the number of bits the
         given bit vector contains: The negated value of this number is the
         number itself!
       o "$vec2->Abs($vec1);"
         "$vec2->Absolute($vec1);"
         Depending on the sign (i.e., the most significant bit) of the number
         in bit vector "$vec1", the contents of bit vector "$vec1" are copied
         to bit vector "$vec2" either with the method ""Copy()"" (if the
         number in bit vector "$vec1" is positive), or with ""Negate()"" (if
         the number in bit vector "$vec1" is negative).
         In other words, this method calculates the absolute value of the
         number in bit vector "$vec1" and stores the result in bit vector
         "$vec2".
         Note that in-place processing is also possible, i.e., "$vec1" and
         "$vec2" may be identical.
         Most importantly, beware that this method produces a counter-
         intuitive result if the number contained in bit vector "$vec1" is "2
         ^ (n-1)" (i.e., "1000...0000"), where ""n"" is the number of bits the
         given bit vector contains: The absolute value of this number is the
         number itself, even though this number is still negative by
         definition (the most significant bit is still set)!
       o "$sign = $vector->Sign();"
         This method returns "0" if all bits in the given bit vector are
         cleared, i.e., if the given bit vector contains the number "0", or if
         the given bit vector has a length of zero (contains no bits at all).
         If not all bits are cleared, this method returns ""-1"" if the most
         significant bit is set (i.e., if the bit vector contains a negative
         number), or "1" otherwise (i.e., if the bit vector contains a
         positive number).
       o "$vec3->Multiply($vec1,$vec2);"
         This method multiplies the two numbers contained in bit vector
         "$vec1" and "$vec2" and stores the result in bit vector "$vec3".
         Note that this method regards its arguments as SIGNED.
         If you want to make sure that a large number can never be treated as
         being negative by mistake, make your bit vectors at least one bit
         longer than the largest number you wish to represent, right from the
         start, or proceed as follows:
             $msb1 = $vec1->msb();
             $msb2 = $vec2->msb();
             $vec1->Resize($vec1->Size()+1);
             $vec2->Resize($vec2->Size()+1);
             $vec3->Resize($vec3->Size()+1);
             $vec1->MSB($msb1);
             $vec2->MSB($msb2);
             $vec3->Multiply($vec1,$vec2);
         Note also that all three bit vector arguments must in principle obey
         the rule of matching sizes, but that the bit vector "$vec3" may be
         larger than the two factors "$vec1" and "$vec2".
         In fact multiplying two binary numbers with ""n"" bits may yield a
         result which is at most ""2n"" bits long.
         Therefore, it is usually a good idea to let bit vector "$vec3" have
         twice the size of bit vector "$vec1" and "$vec2", unless you are
         absolutely sure that the result will fit into a bit vector of the
         same size as the two factors.
         If you are wrong, a fatal "numeric overflow error" will occur.
         Finally, note that in-place processing is possible, i.e., "$vec3" may
         be identical with "$vec1" or "$vec2", or both.
       o "$quot->Divide($vec1,$vec2,$rest);"
         This method divides the two numbers contained in bit vector "$vec1"
         and "$vec2" and stores the quotient in bit vector "$quot" and the
         remainder in bit vector "$rest".
         I.e.,
                     $quot = $vec1 / $vec2;  #  div
                     $rest = $vec1 % $vec2;  #  mod
         Therefore, "$quot" and "$rest" must be two DISTINCT bit vectors, or a
         fatal "result vector(s) must be distinct" error will occur.
         Note also that a fatal "division by zero error" will occur if "$vec2"
         is equal to zero.
         Note further that this method regards its arguments as SIGNED.
         If you want to make sure that a large number can never be treated as
         being negative by mistake, make your bit vectors at least one bit
         longer than the largest number you wish to represent, right from the
         start, or proceed as follows:
             $msb1 = $vec1->msb();
             $msb2 = $vec2->msb();
             $vec1->Resize($vec1->Size()+1);
             $vec2->Resize($vec2->Size()+1);
             $quot->Resize($quot->Size()+1);
             $rest->Resize($rest->Size()+1);
             $vec1->MSB($msb1);
             $vec2->MSB($msb2);
             $quot->Divide($vec1,$vec2,$rest);
         Finally, note that in-place processing is possible, i.e., "$quot" may
         be identical with "$vec1" or "$vec2" or both, and "$rest" may also be
         identical with "$vec1" or "$vec2" or both, as long as "$quot" and
         "$rest" are distinct. (!)
       o "$vecgcd->GCD($veca,$vecb);"
         This method calculates the "Greatest Common Divisor" of the two
         numbers contained in bit vector "$veca" and "$vecb" and stores the
         result in bit vector "$vecgcd".
         The method uses Euklid's algorithm internally:
             int GCD(int a, int b)
             {
                 int t;
                 while (b != 0)
                 {
                     t = a % b; /* = remainder of (a div b) */
                     a = b;
                     b = t;
                 }
                 return(a);
             }
         Note that "GCD(z,0) == GCD(0,z) == z".
       o "$vecgcd->GCD($vecx,$vecy,$veca,$vecb);"
         This variant of the "GCD" method calculates the "Greatest Common
         Divisor" of the two numbers contained in bit vector "$veca" and
         "$vecb" and stores the result in bit vector "$vecgcd".
         Moreover, it determines the two factors which are necessary in order
         to represent the greatest common divisor as a linear combination of
         its two arguments, i.e., the two factors "x" and "y" so that
         "GCD(a,b) == x * a + y * b", and stores them in bit vector "$vecx"
         and "$vecy", respectively.
         For example:
           a = 2322
           b =  654
           GCD( 2322, 654 ) == 6
           x =  20
           y = -71
           20 * 2322 - 71 * 654 == 6
         Please see http://www.cut-the-knot.org/blue/extension.shtml for an
         explanation of how this extension of Euklid's algorithm works.
       o "$vec3->Power($vec1,$vec2);"
         This method calculates the exponentiation of base "$vec1" elevated to
         the "$vec2" power, i.e., ""$vec1 ** $vec2"", and stores the result in
         bit vector "$vec3".
         The method uses an efficient divide-and-conquer algorithm:
         Suppose the exponent is (decimal) 13, for example. The binary
         representation of this exponent is "1101".
         This means we want to calculate
           $vec1 * $vec1 * $vec1 * $vec1 * $vec1 * $vec1 * $vec1 * $vec1 *
           $vec1 * $vec1 * $vec1 * $vec1 *
           $vec1
         That is, "$vec1" multiplied with itself 13 times. The grouping into
         lines above is no coincidence. The first line comprises 8 factors,
         the second contains 4, and the last line just one. This just happens
         to be the binary representation of 13. ";-)"
         We then calculate a series of squares (of squares of squares...) of
         the base, i.e.,
           $power[0] = $vec1;
           $power[1] = $vec1 * $vec1;
           $power[2] = $power[1] * $power[1];
           $power[3] = $power[2] * $power[2];
           etc.
         To calculate the power of our example, we simply initialize our
         result with 1 and consecutively multiply it with the items of the
         series of powers we just calculated, if the corresponding bit of the
         binary representation of the exponent is set:
           $result = 1;
           $result *= $power[0] if ($vec2 & 1);
           $result *= $power[1] if ($vec2 & 2);
           $result *= $power[2] if ($vec2 & 4);
           $result *= $power[3] if ($vec2 & 8);
           etc.
         The bit vector "$vec3" must be of the same size as the base "$vec1"
         or greater. "$vec3" and "$vec1" may be the same vector (i.e., in-
         place calculation as in ""$vec1 **= $vec2;"" is possible), but
         "$vec3" and "$vec2" must be distinct. Finally, the exponent "$vec2"
         must be positive. A fatal error occurs if any of these conditions is
         not met.
       o "$vector->Block_Store($buffer);"
         This method allows you to load the contents of a given bit vector in
         one go.
         This is useful when you store the contents of a bit vector in a file,
         for instance (using method ""Block_Read()""), and when you want to
         restore the previously saved bit vector.
         For this, "$buffer" MUST be a string (NO automatic conversion from
         numeric to string is provided here as would normally in Perl!)
         containing the bit vector in "low order byte first" order.
         If the given string is shorter than what is needed to completely fill
         the given bit vector, the remaining (most significant) bytes of the
         bit vector are filled with zeros, i.e., the previous contents of the
         bit vector are always erased completely.
         If the given string is longer than what is needed to completely fill
         the given bit vector, the superfluous bytes are simply ignored.
         See "sysread" in perlfunc for how to read in the contents of
         "$buffer" from a file prior to passing it to this method.
       o "$buffer = $vector->Block_Read();"
         This method allows you to export the contents of a given bit vector
         in one block.
         This is useful when you want to save the contents of a bit vector for
         later, for instance in a file.
         The advantage of this method is that it allows you to do so in the
         compactest possible format, in binary.
         The method returns a Perl string which contains an exact copy of the
         contents of the given bit vector in "low order byte first" order.
         See "syswrite" in perlfunc for how to write the data from this string
         to a file.
       o "$size = $vector->Word_Size();"
         Each bit vector is internally organized as an array of machine words.
         The methods whose names begin with "Word_" allow you to access this
         internal array of machine words.
         Note that because the size of a machine word may vary from system to
         system, these methods are inherently MACHINE-DEPENDENT!
         Therefore, DO NOT USE these methods unless you are absolutely certain
         that portability of your code is not an issue!
         You have been warned!
         To be machine-independent, use the methods whose names begin with
         ""Chunk_"" instead, with chunk sizes no greater than 32 bits.
         The method ""Word_Size()"" returns the number of machine words that
         the internal array of words of the given bit vector contains.
         This is similar in function to the term ""scalar(@array)"" for a Perl
         array.
       o "$vector->Word_Store($offset,$word);"
         This method allows you to store a given value "$word" at a given
         position "$offset" in the internal array of words of the given bit
         vector.
         Note that "$offset" must lie in the permitted range between "0" and
         ""$vector->Word_Size()-1"", or a fatal "offset out of range" error
         will occur.
         This method is similar in function to the expression
         ""$array[$offset] = $word;"" for a Perl array.
       o "$word = $vector->Word_Read($offset);"
         This method allows you to access the value of a given machine word at
         position "$offset" in the internal array of words of the given bit
         vector.
         Note that "$offset" must lie in the permitted range between "0" and
         ""$vector->Word_Size()-1"", or a fatal "offset out of range" error
         will occur.
         This method is similar in function to the expression ""$word =
         $array[$offset];"" for a Perl array.
       o "$vector->Word_List_Store(@words);"
         This method allows you to store a list of values "@words" in the
         internal array of machine words of the given bit vector.
         Thereby the LEFTMOST value in the list ("$words[0]") is stored in the
         LEAST significant word of the internal array of words (the one with
         offset "0"), the next value from the list ("$words[1]") is stored in
         the word with offset "1", and so on, as intuitively expected.
         If the list "@words" contains fewer elements than the internal array
         of words of the given bit vector contains machine words, the
         remaining (most significant) words are filled with zeros.
         If the list "@words" contains more elements than the internal array
         of words of the given bit vector contains machine words, the
         superfluous values are simply ignored.
         This method is comparable in function to the expression ""@array =
         @words;"" for a Perl array.
       o "@words = $vector->Word_List_Read();"
         This method allows you to retrieve the internal array of machine
         words of the given bit vector all at once.
         Thereby the LEFTMOST value in the returned list ("$words[0]") is the
         LEAST significant word from the given bit vector, and the RIGHTMOST
         value in the returned list ("$words[$#words]") is the MOST
         significant word of the given bit vector.
         This method is similar in function to the expression ""@words =
         @array;"" for a Perl array.
       o "$vector->Word_Insert($offset,$count);"
         This method inserts "$count" empty new machine words at position
         "$offset" in the internal array of words of the given bit vector.
         The "$count" most significant words are lost, and all words starting
         with word number "$offset" up to and including word number
         ""$vector->Word_Size()-$count-1"" are moved up by "$count" places.
         The now vacant "$count" words starting at word number "$offset" (up
         to and including word number ""$offset+$count-1"") are then set to
         zero (cleared).
         Note that this method does NOT increase the size of the given bit
         vector, i.e., the bit vector is NOT extended at its upper end to
         "rescue" the "$count" uppermost (most significant) words - instead,
         these words are lost forever.
         If you don't want this to happen, you have to increase the size of
         the given bit vector EXPLICITLY and BEFORE you perform the "Insert"
         operation, with a statement such as the following:
           $vector->Resize($vector->Size() + $count * Bit::Vector->Word_Bits());
         Note also that "$offset" must lie in the permitted range between "0"
         and ""$vector->Word_Size()-1"", or a fatal "offset out of range"
         error will occur.
         If the term ""$offset + $count"" exceeds ""$vector->Word_Size()-1"",
         all the words starting with word number "$offset" up to word number
         ""$vector->Word_Size()-1"" are simply cleared.
       o "$vector->Word_Delete($offset,$count);"
         This method deletes, i.e., removes the words starting at position
         "$offset" up to and including word number ""$offset+$count-1"" from
         the internal array of machine words of the given bit vector.
         The remaining uppermost words (starting at position
         ""$offset+$count"" up to and including word number
         ""$vector->Word_Size()-1"") are moved down by "$count" places.
         The now vacant uppermost (most significant) "$count" words are then
         set to zero (cleared).
         Note that this method does NOT decrease the size of the given bit
         vector, i.e., the bit vector is NOT clipped at its upper end to "get
         rid of" the vacant "$count" uppermost words.
         If you don't want this, i.e., if you want the bit vector to shrink
         accordingly, you have to do so EXPLICITLY and AFTER the "Delete"
         operation, with a couple of statements such as these:
           $bits = $vector->Size();
           $count *= Bit::Vector->Word_Bits();
           if ($count > $bits) { $count = $bits; }
           $vector->Resize($bits - $count);
         Note also that "$offset" must lie in the permitted range between "0"
         and ""$vector->Word_Size()-1"", or a fatal "offset out of range"
         error will occur.
         If the term ""$offset + $count"" exceeds ""$vector->Word_Size()-1"",
         all the words starting with word number "$offset" up to word number
         ""$vector->Word_Size()-1"" are simply cleared.
       o "$vector->Chunk_Store($chunksize,$offset,$chunk);"
         This method allows you to set more than one bit at a time with
         different values.
         You can access chunks (i.e., ranges of contiguous bits) between one
         and at most ""Bit::Vector->Long_Bits()"" bits wide.
         In order to be portable, though, you should never use chunk sizes
         larger than 32 bits.
         If the given "$chunksize" does not lie between "1" and
         ""Bit::Vector->Long_Bits()"", a fatal "chunk size out of range" error
         will occur.
         The method copies the "$chunksize" least significant bits from the
         value "$chunk" to the given bit vector, starting at bit position
         "$offset" and proceeding upwards until bit number
         ""$offset+$chunksize-1"".
         (I.e., bit number "0" of "$chunk" becomes bit number "$offset" in the
         given bit vector, and bit number ""$chunksize-1"" becomes bit number
         ""$offset+$chunksize-1"".)
         If the term ""$offset+$chunksize-1"" exceeds ""$vector->Size()-1"",
         the corresponding superfluous (most significant) bits from "$chunk"
         are simply ignored.
         Note that "$offset" itself must lie in the permitted range between
         "0" and ""$vector->Size()-1"", or a fatal "offset out of range" error
         will occur.
         This method (as well as the other ""Chunk_"" methods) is useful, for
         example, when you are reading in data in chunks of, say, 8 bits,
         which you need to access later, say, using 16 bits at a time (like
         audio CD wave files, for instance).
       o "$chunk = $vector->Chunk_Read($chunksize,$offset);"
         This method allows you to read the values of more than one bit at a
         time.
         You can read chunks (i.e., ranges of contiguous bits) between one and
         at most ""Bit::Vector->Long_Bits()"" bits wide.
         In order to be portable, though, you should never use chunk sizes
         larger than 32 bits.
         If the given "$chunksize" does not lie between "1" and
         ""Bit::Vector->Long_Bits()"", a fatal "chunk size out of range" error
         will occur.
         The method returns the "$chunksize" bits from the given bit vector
         starting at bit position "$offset" and proceeding upwards until bit
         number ""$offset+$chunksize-1"".
         (I.e., bit number "$offset" of the given bit vector becomes bit
         number "0" of the returned value, and bit number
         ""$offset+$chunksize-1"" becomes bit number ""$chunksize-1"".)
         If the term ""$offset+$chunksize-1"" exceeds ""$vector->Size()-1"",
         the non-existent bits are simply not returned.
         Note that "$offset" itself must lie in the permitted range between
         "0" and ""$vector->Size()-1"", or a fatal "offset out of range" error
         will occur.
       o "$vector->Chunk_List_Store($chunksize,@chunks);"
         This method allows you to fill the given bit vector with a list of
         data packets ("chunks") of any size ("$chunksize") you like (within
         certain limits).
         In fact the given "$chunksize" must lie in the range between "1" and
         ""Bit::Vector->Long_Bits()"", or a fatal "chunk size out of range"
         error will occur.
         In order to be portable, though, you should never use chunk sizes
         larger than 32 bits.
         The given bit vector is thereby filled in ascending order: The first
         chunk from the list (i.e., "$chunks[0]") fills the "$chunksize" least
         significant bits, the next chunk from the list ("$chunks[1]") fills
         the bits number "$chunksize" to number ""2*$chunksize-1"", the third
         chunk ("$chunks[2]") fills the bits number ""2*$chunksize"", to
         number ""3*$chunksize-1"", and so on.
         If there a less chunks in the list than are needed to fill the entire
         bit vector, the remaining (most significant) bits are cleared, i.e.,
         the previous contents of the given bit vector are always erased
         completely.
         If there are more chunks in the list than are needed to fill the
         entire bit vector, and/or if a chunk extends beyond
         ""$vector->Size()-1"" (which happens whenever ""$vector->Size()"" is
         not a multiple of "$chunksize"), the superfluous chunks and/or bits
         are simply ignored.
         The method is useful, for example (and among many other
         applications), for the conversion of packet sizes in a data stream.
         This method can also be used to store an octal string in a given bit
         vector:
           $vector->Chunk_List_Store(3, split(//, reverse $string));
         Note however that unlike the conversion methods ""from_Hex()"",
         ""from_Bin()"", ""from_Dec()"" and ""from_Enum()"", this statement
         does not include any syntax checking, i.e., it may fail silently,
         without warning.
         To perform syntax checking, add the following statements:
           if ($string =~ /^[0-7]+$/)
           {
               # okay, go ahead with conversion as shown above
           }
           else
           {
               # error, string contains other than octal characters
           }
         Another application is to store a repetitive pattern in a given bit
         vector:
           $pattern = 0xDEADBEEF;
           $length = 32;            # = length of $pattern in bits
           $size = $vector->Size();
           $factor = int($size / $length);
           if ($size % $length) { $factor++; }
           $vector->Chunk_List_Store($length, ($pattern) x $factor);
       o "@chunks = $vector->Chunk_List_Read($chunksize);"
         This method allows you to access the contents of the given bit vector
         in form of a list of data packets ("chunks") of a size ("$chunksize")
         of your choosing (within certain limits).
         In fact the given "$chunksize" must lie in the range between "1" and
         ""Bit::Vector->Long_Bits()"", or a fatal "chunk size out of range"
         error will occur.
         In order to be portable, though, you should never use chunk sizes
         larger than 32 bits.
         The given bit vector is thereby read in ascending order: The
         "$chunksize" least significant bits (bits number "0" to
         ""$chunksize-1"") become the first chunk in the returned list (i.e.,
         "$chunks[0]"). The bits number "$chunksize" to ""2*$chunksize-1""
         become the next chunk in the list ("$chunks[1]"), and so on.
         If ""$vector->Size()"" is not a multiple of "$chunksize", the last
         chunk in the list will contain fewer bits than "$chunksize".
         BEWARE that for large bit vectors and/or small values of
         "$chunksize", the number of returned list elements can be extremely
         large! BE CAREFUL!
         You could blow up your application with lack of memory (each list
         element is a full-grown Perl scalar, internally, with an associated
         memory overhead for its administration!) or at least cause a
         noticeable, more or less long-lasting "freeze" of your application!
         Possible applications:
         The method is especially useful in the conversion of packet sizes in
         a data stream.
         This method can also be used to convert a given bit vector to a
         string of octal numbers:
           $string = reverse join('', $vector->Chunk_List_Read(3));
       o "$vector->Index_List_Remove(@indices);"
         This method allows you to specify a list of indices of bits which
         should be turned off in the given bit vector.
         In fact this method is a shortcut for
             foreach $index (@indices)
             {
                 $vector->Bit_Off($index);
             }
         In contrast to all other import methods in this module, this method
         does NOT clear the given bit vector before processing its list of
         arguments.
         Instead, this method allows you to accumulate the results of various
         consecutive calls.
         (The same holds for the method ""Index_List_Store()"". As a
         consequence, you can "wipe out" what you did using the method
         ""Index_List_Remove()"" by passing the identical argument list to the
         method ""Index_List_Store()"".)
       o "$vector->Index_List_Store(@indices);"
         This method allows you to specify a list of indices of bits which
         should be turned on in the given bit vector.
         In fact this method is a shortcut for
             foreach $index (@indices)
             {
                 $vector->Bit_On($index);
             }
         In contrast to all other import methods in this module, this method
         does NOT clear the given bit vector before processing its list of
         arguments.
         Instead, this method allows you to accumulate the results of various
         consecutive calls.
         (The same holds for the method ""Index_List_Remove()"". As a
         consequence, you can "wipe out" what you did using the method
         ""Index_List_Store()"" by passing the identical argument list to the
         method ""Index_List_Remove()"".)
       o "@indices = $vector->Index_List_Read();"
         This method returns a list of Perl scalars.
         The list contains one scalar for each set bit in the given bit
         vector.
         BEWARE that for large bit vectors, this can result in a literally
         overwhelming number of list elements! BE CAREFUL! You could run out
         of memory or slow down your application considerably!
         Each scalar contains the number of the index corresponding to the bit
         in question.
         These indices are always returned in ascending order.
         If the given bit vector is empty (contains only cleared bits) or if
         it has a length of zero (if it contains no bits at all), the method
         returns an empty list.
         This method can be useful, for instance, to obtain a list of prime
         numbers:
             $limit = 1000; # or whatever
             $vector = Bit::Vector->new($limit+1);
             $vector->Primes();
             @primes = $vector->Index_List_Read();
       o "$vec3->Or($vec1,$vec2);"
         "$set3->Union($set1,$set2);"
         This method calculates the union of "$set1" and "$set2" and stores
         the result in "$set3".
         This is usually written as ""$set3 = $set1 u $set2"" in set theory
         (where "u" is the "cup" operator).
         (On systems where the "cup" character is unavailable this operator is
         often denoted by a plus sign "+".)
         In-place calculation is also possible, i.e., "$set3" may be identical
         with "$set1" or "$set2" or both.
       o "$vec3->And($vec1,$vec2);"
         "$set3->Intersection($set1,$set2);"
         This method calculates the intersection of "$set1" and "$set2" and
         stores the result in "$set3".
         This is usually written as ""$set3 = $set1 n $set2"" in set theory
         (where "n" is the "cap" operator).
         (On systems where the "cap" character is unavailable this operator is
         often denoted by an asterisk "*".)
         In-place calculation is also possible, i.e., "$set3" may be identical
         with "$set1" or "$set2" or both.
       o "$vec3->AndNot($vec1,$vec2);"
         "$set3->Difference($set1,$set2);"
         This method calculates the difference of "$set1" less "$set2" and
         stores the result in "$set3".
         This is usually written as ""$set3 = $set1 \ $set2"" in set theory
         (where "\" is the "less" operator).
         In-place calculation is also possible, i.e., "$set3" may be identical
         with "$set1" or "$set2" or both.
       o "$vec3->Xor($vec1,$vec2);"
         "$set3->ExclusiveOr($set1,$set2);"
         This method calculates the symmetric difference of "$set1" and
         "$set2" and stores the result in "$set3".
         This can be written as ""$set3 = ($set1 u $set2) \ ($set1 n $set2)""
         in set theory (the union of the two sets less their intersection).
         When sets are implemented as bit vectors then the above formula is
         equivalent to the exclusive-or between corresponding bits of the two
         bit vectors (hence the name of this method).
         Note that this method is also much more efficient than evaluating the
         above formula explicitly since it uses a built-in machine language
         instruction internally.
         In-place calculation is also possible, i.e., "$set3" may be identical
         with "$set1" or "$set2" or both.
       o "$vec2->Not($vec1);"
         "$set2->Complement($set1);"
         This method calculates the complement of "$set1" and stores the
         result in "$set2".
         In "big integer" arithmetic, this is equivalent to calculating the
         one's complement of the number stored in the bit vector "$set1" in
         binary representation.
         In-place calculation is also possible, i.e., "$set2" may be identical
         with "$set1".
       o "if ($set1->subset($set2))"
         Returns "true" ("1") if "$set1" is a subset of "$set2" (i.e.,
         completely contained in "$set2") and "false" ("0") otherwise.
         This means that any bit which is set ("1") in "$set1" must also be
         set in "$set2", but "$set2" may contain set bits which are not set in
         "$set1", in order for the condition of subset relationship to be true
         between these two sets.
         Note that by definition, if two sets are identical, they are also
         subsets (and also supersets) of each other.
       o "$norm = $set->Norm();"
         Returns the norm (number of bits which are set) of the given vector.
         This is equivalent to the number of elements contained in the given
         set.
         Uses a byte lookup table for calculating the number of set bits per
         byte, and thus needs a time for evaluation (and a number of loops)
         linearly proportional to the length of the given bit vector (in
         bytes).
         This should be the fastest algorithm on average.
       o "$norm = $set->Norm2();"
         Returns the norm (number of bits which are set) of the given vector.
         This is equivalent to the number of elements contained in the given
         set.
         This does the same as the method ""Norm()"" above, only with a
         different algorithm:
         This method counts the number of set and cleared bits at the same
         time and will stop when either of them has been exhausted, thus
         needing at most half as many loops per machine word as the total
         number of bits in a machine word - in fact it will need a number of
         loops equal to the minimum of the number of set bits and the number
         of cleared bits.
         This might be a faster algorithm than of the method ""Norm()"" above
         on some systems, depending on the system's architecture and the
         compiler and optimisation used, for bit vectors with sparse set bits
         and for bit vectors with sparse cleared bits (i.e., predominantly set
         bits).
       o "$norm = $set->Norm3();"
         Returns the norm (number of bits which are set) of the given vector.
         This is equivalent to the number of elements contained in the given
         set.
         This does the same as the two methods ""Norm()"" and ""Norm2()""
         above, however with a different algorithm.
         In fact this is the implementation of the method ""Norm()"" used in
         previous versions of this module.
         The method needs a number of loops per machine word equal to the
         number of set bits in that machine word.
         Only for bit vectors with sparse set bits will this method be fast;
         it will depend on a system's architecture and compiler whether the
         method will be faster than any of the two methods above in such
         cases.
         On average however, this is probably the slowest method of the three.
       o "$min = $set->Min();"
         Returns the minimum of the given set, i.e., the minimum of all
         indices of all set bits in the given bit vector "$set".
         If the set is empty (no set bits), plus infinity (represented by the
         constant "MAX_LONG" on your system) is returned.
         (This constant is usually 2 ^ (n-1) - 1, where ""n"" is the number of
         bits of an unsigned long on your machine.)
       o "$max = $set->Max();"
         Returns the maximum of the given set, i.e., the maximum of all
         indices of all set bits in the given bit vector "$set".
         If the set is empty (no set bits), minus infinity (represented by the
         constant "MIN_LONG" on your system) is returned.
         (This constant is usually -(2 ^ (n-1) - 1) or -(2 ^ (n-1)), where
         ""n"" is the number of bits of an unsigned long on your machine.)
       o "$m3->Multiplication($r3,$c3,$m1,$r1,$c1,$m2,$r2,$c2);"
         This method multiplies two boolean matrices (stored as bit vectors)
         "$m1" and "$m2" and stores the result in matrix "$m3".
         The method uses the binary "xor" operation (""^"") as the boolean
         addition operator (""+"").
         An exception is raised if the product of the number of rows and
         columns of any of the three matrices differs from the actual size of
         their underlying bit vector.
         An exception is also raised if the numbers of rows and columns of the
         three matrices do not harmonize in the required manner:
           rows3 == rows1
           cols3 == cols2
           cols1 == rows2
         This method is used by the module "Math::MatrixBool".
         See Math::MatrixBool(3) for details.
       o "$m3->Product($r3,$c3,$m1,$r1,$c1,$m2,$r2,$c2);"
         This method multiplies two boolean matrices (stored as bit vectors)
         "$m1" and "$m2" and stores the result in matrix "$m3".
         This special method uses the binary "or" operation (""|"") as the
         boolean addition operator (""+"").
         An exception is raised if the product of the number of rows and
         columns of any of the three matrices differs from the actual size of
         their underlying bit vector.
         An exception is also raised if the numbers of rows and columns of the
         three matrices do not harmonize in the required manner:
           rows3 == rows1
           cols3 == cols2
           cols1 == rows2
         This method is used by the module "Math::MatrixBool".
         See Math::MatrixBool(3) for details.
       o "$matrix->Closure($rows,$cols);"
         This method calculates the reflexive transitive closure of the given
         boolean matrix (stored as a bit vector) using Kleene's algoritm.
         (See Math::Kleene(3) for a brief introduction into the theory behind
         Kleene's algorithm.)
         The reflexive transitive closure answers the question whether a path
         exists between any two vertices of a graph whose edges are given as a
         matrix:
         If a (directed) edge exists going from vertex "i" to vertex "j", then
         the element in the matrix with coordinates (i,j) is set to "1"
         (otherwise it remains set to "0").
         If the edges are undirected, the resulting matrix is symmetric, i.e.,
         elements (i,j) and (j,i) always contain the same value.
         The matrix representing the edges of the graph only answers the
         question whether an EDGE exists between any two vertices of the graph
         or not, whereas the reflexive transitive closure answers the question
         whether a PATH (a series of adjacent edges) exists between any two
         vertices of the graph!
         Note that the contents of the given matrix are modified by this
         method, so make a copy of the initial matrix in time if you are going
         to need it again later.
         An exception is raised if the given matrix is not quadratic, i.e., if
         the number of rows and columns of the given matrix is not identical.
         An exception is also raised if the product of the number of rows and
         columns of the given matrix differs from the actual size of its
         underlying bit vector.
         This method is used by the module "Math::MatrixBool".
         See Math::MatrixBool(3) for details.
       o "$matrix2->Transpose($rows2,$cols2,$matrix1,$rows1,$cols1);"
         This method calculates the transpose of a boolean matrix "$matrix1"
         (stored as a bit vector) and stores the result in matrix "$matrix2".
         The transpose of a boolean matrix, representing the edges of a graph,
         can be used for finding the strongly connected components of that
         graph.
         An exception is raised if the product of the number of rows and
         columns of any of the two matrices differs from the actual size of
         its underlying bit vector.
         An exception is also raised if the following conditions are not met:
           rows2 == cols1
           cols2 == rows1
         Note that in-place processing ("$matrix1" and "$matrix2" are
         identical) is only possible if the matrix is quadratic. Otherwise, a
         fatal "matrix is not quadratic" error will occur.
         This method is used by the module "Math::MatrixBool".
         See Math::MatrixBool(3) for details.
SEE ALSO
       Bit::Vector::Overload(3), Bit::Vector::String(3), Storable(3).
       Set::IntRange(3), Math::MatrixBool(3), Math::MatrixReal(3),
       DFA::Kleene(3), Math::Kleene(3), Graph::Kruskal(3).
VERSION
       This man page documents "Bit::Vector" version 7.3.
AUTHOR
         Steffen Beyer
         mailto:STBEY AT cpan.org
         http://www.engelschall.com/u/sb/download/
COPYRIGHT
       Copyright (c) 1995 - 2013 by Steffen Beyer. All rights reserved.
LICENSE
       This package is free software; you can redistribute it and/or modify it
       under the same terms as Perl itself, i.e., under the terms of the
       "Artistic License" or the "GNU General Public License".
       The C library at the core of this Perl module can additionally be
       redistributed and/or modified under the terms of the "GNU Library
       General Public License".
       Please refer to the files "Artistic.txt", "GNU_GPL.txt" and
       "GNU_LGPL.txt" in this distribution for details!
DISCLAIMER
       This package is distributed in the hope that it will be useful, but
       WITHOUT ANY WARRANTY; without even the implied warranty of
       MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
       See the "GNU General Public License" for more details.

perl v5.16.3                      2013-06-01                         Vector(3)