BN_ADD(3) OpenSSL BN_ADD(3)
NAME
BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_mod_sqrt, BN_exp, BN_mod_exp,
BN_gcd - arithmetic operations on BIGNUMs
SYNOPSIS
#include <openssl/bn.h>
int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
BN_CTX *ctx);
int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);
int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);
int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);
int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
BIGNUM *BN_mod_sqrt(BIGNUM *in, BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx);
int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
DESCRIPTION
BN_add() adds a and b and places the result in r ("r=a+b"). r may be
the same BIGNUM as a or b.
BN_sub() subtracts b from a and places the result in r ("r=a-b"). r
may be the same BIGNUM as a or b.
BN_mul() multiplies a and b and places the result in r ("r=a*b"). r
may be the same BIGNUM as a or b. For multiplication by powers of 2,
use BN_lshift(3).
BN_sqr() takes the square of a and places the result in r ("r=a^2"). r
and a may be the same BIGNUM. This function is faster than
BN_mul(r,a,a).
BN_div() divides a by d and places the result in dv and the remainder
in rem ("dv=a/d, rem=a%d"). Either of dv and rem may be NULL, in which
case the respective value is not returned. The result is rounded
towards zero; thus if a is negative, the remainder will be zero or
negative. For division by powers of 2, use BN_rshift(3).
BN_mod() corresponds to BN_div() with dv set to NULL.
BN_nnmod() reduces a modulo m and places the nonnegative remainder in
r.
BN_mod_add() adds a to b modulo m and places the nonnegative result in
r.
BN_mod_sub() subtracts b from a modulo m and places the nonnegative
result in r.
BN_mod_mul() multiplies a by b and finds the nonnegative remainder
respective to modulus m ("r=(a*b) mod m"). r may be the same BIGNUM as
a or b. For more efficient algorithms for repeated computations using
the same modulus, see BN_mod_mul_montgomery(3) and
BN_mod_mul_reciprocal(3).
BN_mod_sqr() takes the square of a modulo m and places the result in r.
BN_mod_sqrt() returns the modular square root of a such that "in^2 = a
(mod p)". The modulus p must be a prime, otherwise an error or an
incorrect "result" will be returned. The result is stored into in
which can be NULL. The result will be newly allocated in that case.
BN_exp() raises a to the p-th power and places the result in r
("r=a^p"). This function is faster than repeated applications of
BN_mul().
BN_mod_exp() computes a to the p-th power modulo m ("r=a^p % m"). This
function uses less time and space than BN_exp(). Do not call this
function when m is even and any of the parameters have the
BN_FLG_CONSTTIME flag set.
BN_gcd() computes the greatest common divisor of a and b and places the
result in r. r may be the same BIGNUM as a or b.
For all functions, ctx is a previously allocated BN_CTX used for
temporary variables; see BN_CTX_new(3).
Unless noted otherwise, the result BIGNUM must be different from the
arguments.
RETURN VALUES
The BN_mod_sqrt() returns the result (possibly incorrect if p is not a
prime), or NULL.
For all remaining functions, 1 is returned for success, 0 on error. The
return value should always be checked (e.g., "if (!BN_add(r,a,b)) goto
err;"). The error codes can be obtained by ERR_get_error(3).
SEE ALSO
ERR_get_error(3), BN_CTX_new(3), BN_add_word(3), BN_set_bit(3)
COPYRIGHT
Copyright 2000-2020 The OpenSSL Project Authors. All Rights Reserved.
Licensed under the OpenSSL license (the "License"). You may not use
this file except in compliance with the License. You can obtain a copy
in the file LICENSE in the source distribution or at
<https://www.openssl.org/source/license.html>.
1.1.1k 2024-10-09 BN_ADD(3)