rrd-beginners(category29-redhat-fedora.html) - phpMan

RRD-BEGINNERS(1)                    rrdtool                   RRD-BEGINNERS(1)

NAME
       rrd-beginners - RRDtool Beginners' Guide
SYNOPSIS
       Helping new RRDtool users to understand the basics of RRDtool
DESCRIPTION
       This manual is an attempt to assist beginners in understanding the
       concepts of RRDtool. It sheds a light on differences between RRDtool
       and other databases. With help of an example, it explains the structure
       of RRDtool database. This is followed by an overview of the "graph"
       feature of RRDtool.  At the end, it has sample scripts that illustrate
       the usage/wrapping of RRDtool within Shell or Perl scripts.
   What makes RRDtool so special?
       RRDtool is GNU licensed software developed by Tobias Oetiker, a system
       manager at the Swiss Federal Institute of Technology. Though it is a
       database, there are distinct differences between RRDtool databases and
       other databases as listed below:
       o   RRDtool stores data; that makes it a back-end tool. The RRDtool
           command set allows the creation of graphs; that makes it a front-
           end tool as well. Other databases just store data and can not
           create graphs.
       o   In case of linear databases, new data gets appended at the bottom
           of the database table. Thus its size keeps on increasing, whereas
           the size of an RRDtool database is determined at creation time.
           Imagine an RRDtool database as the perimeter of a circle. Data is
           added along the perimeter. When new data reaches the starting
           point, it overwrites existing data. This way, the size of an
           RRDtool database always remains constant. The name "Round Robin"
           stems from this behavior.
       o   Other databases store the values as supplied. RRDtool can be
           configured to calculate the rate of change from the previous to the
           current value and store this information instead.
       o   Other databases get updated when values are supplied. The RRDtool
           database is structured in such a way that it needs data at
           predefined time intervals. If it does not get a new value during
           the interval, it stores an UNKNOWN value for that interval. So,
           when using the RRDtool database, it is imperative to use scripts
           that run at regular intervals to ensure a constant data flow to
           update the RRDtool database.
       RRDtool is designed to store time series of data. With every data
       update, an associated time stamp is stored. Time is always expressed in
       seconds passed since epoch (01-01-1970). RRDtool can be installed on
       Unix as well as Windows. It comes with a command set to carry out
       various operations on RRD databases. This command set can be accessed
       from the command line, as well as from Shell or Perl scripts. The
       scripts act as wrappers for accessing data stored in RRDtool databases.
   Understanding by an example
       The structure of an RRD database is different than other linear
       databases.  Other databases define tables with columns, and many other
       parameters. These definitions sometimes are very complex, especially in
       large databases.  RRDtool databases are primarily used for monitoring
       purposes and hence are very simple in structure. The parameters that
       need to be defined are variables that hold values and archives of those
       values. Being time sensitive, a couple of time related parameters are
       also defined. Because of its structure, the definition of an RRDtool
       database also includes a provision to specify specific actions to take
       in the absence of update values. Data Source (DS), heartbeat, Date
       Source Type (DST), Round Robin Archive (RRA), and Consolidation
       Function (CF) are some of the terminologies related to RRDtool
       databases.
       The structure of a database and the terminology associated with it can
       be best explained with an example.
        rrdtool create target.rrd \
                --start 1023654125 \
                --step 300 \
                DS:mem:GAUGE:600:0:671744 \
                RRA:AVERAGE:0.5:12:24 \
                RRA:AVERAGE:0.5:288:31
       This example creates a database named target.rrd. Start time
       (1'023'654'125) is specified in total number of seconds since epoch
       (time in seconds since 01-01-1970). While updating the database, the
       update time is also specified.  This update time MUST be large (later)
       then start time and MUST be in seconds since epoch.
       The step of 300 seconds indicates that database expects new values
       every 300 seconds. The wrapper script should be scheduled to run every
       step seconds so that it updates the database every step seconds.
       DS (Data Source) is the actual variable which relates to the parameter
       on the device that is monitored. Its syntax is
        DS:variable_name:DST:heartbeat:min:max
       DS is a key word. "variable_name" is a name under which the parameter
       is saved in the database. There can be as many DSs in a database as
       needed. After every step interval, a new value of DS is supplied to
       update the database.  This value is also called Primary Data Point
       (PDP). In our example mentioned above, a new PDP is generated every 300
       seconds.
       Note, that if you do NOT supply new data points exactly every 300
       seconds, this is not a problem, RRDtool will interpolate the data
       accordingly.
       DST (Data Source Type) defines the type of the DS. It can be COUNTER,
       DERIVE, ABSOLUTE, GAUGE. A DS declared as COUNTER will save the rate of
       change of the value over a step period. This assumes that the value is
       always increasing (the difference between the current and the previous
       value is greater than 0). Traffic counters on a router are an ideal
       candidate for using COUNTER as DST. DERIVE is the same as COUNTER, but
       it allows negative values as well. If you want to see the rate of
       change in free disk space on your server, then you might want to use
       the DERIVE data type. ABSOLUTE also saves the rate of change, but it
       assumes that the previous value is set to 0. The difference between the
       current and the previous value is always equal to the current value.
       Thus it just stores the current value divided by the step interval (300
       seconds in our example). GAUGE does not save the rate of change. It
       saves the actual value itself. There are no divisions or calculations.
       Memory consumption in a server is a typical example of gauge. The
       difference between the different types DSTs can be explained better
       with the following example:
        Values       = 300, 600, 900, 1200
        Step         = 300 seconds
        COUNTER DS   =    1,  1,   1,    1
        DERIVE DS    =    1,  1,   1,    1
        ABSOLUTE DS  =    1,  2,   3,    4
        GAUGE DS     = 300, 600, 900, 1200
       The next parameter is heartbeat. In our example, heartbeat is 600
       seconds. If the database does not get a new PDP within 300 seconds, it
       will wait for another 300 seconds (total 600 seconds).  If it doesn't
       receive any PDP within 600 seconds, it will save an UNKNOWN value into
       the database. This UNKNOWN value is a special feature of RRDtool - it
       is much better than to assume a missing value was 0 (zero) or any other
       number which might also be a valid data value.  For example, the
       traffic flow counter on a router keeps increasing. Lets say, a value is
       missed for an interval and 0 is stored instead of UNKNOWN. Now when the
       next value becomes available, it will calculate the difference between
       the current value and the previous value (0) which is not correct. So,
       inserting the value UNKNOWN makes much more sense here.
       The next two parameters are the minimum and maximum value,
       respectively. If the variable to be stored has predictable maximum and
       minimum values, this should be specified here. Any update value falling
       out of this range will be stored as UNKNOWN.
       The next line declares a round robin archive (RRA). The syntax for
       declaring an RRA is
        RRA:CF:xff:step:rows
       RRA is the keyword to declare RRAs. The consolidation function (CF) can
       be AVERAGE, MINIMUM, MAXIMUM, and LAST. The concept of the consolidated
       data point (CDP) comes into the picture here. A CDP is CFed (averaged,
       maximum/minimum value or last value) from step number of PDPs. This RRA
       will hold rows CDPs.
       Lets have a look at the example above. For the first RRA, 12 (steps)
       PDPs (DS variables) are AVERAGEed (CF) to form one CDP. 24 (rows) of
       theses CDPs are archived. Each PDP occurs at 300 seconds. 12 PDPs
       represent 12 times 300 seconds which is 1 hour. It means 1 CDP (which
       is equal to 12 PDPs) represents data worth 1 hour. 24 such CDPs
       represent 1 day (1 hour times 24 CDPs). This means, this RRA is an
       archive for one day. After 24 CDPs, CDP number 25 will replace the 1st
       CDP. The second RRA saves 31 CDPs; each CPD represents an AVERAGE value
       for a day (288 PDPs, each covering 300 seconds = 24 hours). Therefore
       this RRA is an archive for one month. A single database can have many
       RRAs. If there are multiple DSs, each individual RRA will save data for
       all the DSs in the database. For example, if a database has 3 DSs and
       daily, weekly, monthly, and yearly RRAs are declared, then each RRA
       will hold data from all 3 data sources.
   Graphical Magic
       Another important feature of RRDtool is its ability to create graphs.
       The "graph" command uses the "fetch" command internally to retrieve
       values from the database. With the retrieved values it draws graphs as
       defined by the parameters supplied on the command line. A single graph
       can show different DS (Data Sources) from a database. It is also
       possible to show the values from more than one database in a single
       graph. Often, it is necessary to perform some math on the values
       retrieved from the database before plotting them. For example, in SNMP
       replies, memory consumption values are usually specified in KBytes and
       traffic flow on interfaces is specified in Bytes. Graphs for these
       values will be more meaningful if values are represented in MBytes and
       mbps. The RRDtool graph command allows to define such conversions.
       Apart from mathematical calculations, it is also possible to perform
       logical operations such as greater than, less than, and if/then/else.
       If a database contains more than one RRA archive, then a question may
       arise - how does RRDtool decide which RRA archive to use for retrieving
       the values? RRDtool looks at several things when making its choice.
       First it makes sure that the RRA covers as much of the graphing time
       frame as possible. Second it looks at the resolution of the RRA
       compared to the resolution of the graph. It tries to find one which has
       the same or higher better resolution. With the "-r" option you can
       force RRDtool to assume a different resolution than the one calculated
       from the pixel width of the graph.
       Values of different variables can be presented in 5 different shapes in
       a graph - AREA, LINE1, LINE2, LINE3, and STACK. AREA is represented by
       a solid colored area with values as the boundary of this area.
       LINE1/2/3 (increasing width) are just plain lines representing the
       values. STACK is also an area but it is "stack"ed on top AREA or
       LINE1/2/3. Another important thing to note is that variables are
       plotted in the order they are defined in the graph command. Therefore
       care must be taken to define STACK only after defining AREA/LINE. It is
       also possible to put formatted comments within the graph.  Detailed
       instructions can be found in the graph manual.
   Wrapping RRDtool within Shell/Perl script
       After understanding RRDtool it is now a time to actually use RRDtool in
       scripts. Tasks involved in network management are data collection, data
       storage, and data retrieval. In the following example, the previously
       created target.rrd database is used. Data collection and data storage
       is done using Shell scripts. Data retrieval and report generation is
       done using Perl scripts. These scripts are shown below:
       Shell script (collects data, updates database)
        #!/bin/sh
        a=0
        while [ "$a" == 0 ]; do
        snmpwalk -c public 192.168.1.250 hrSWRunPerfMem > snmp_reply
            total_mem=`awk 'BEGIN {tot_mem=0}
                                  { if ($NF == "KBytes")
                                    {tot_mem=tot_mem+$(NF-1)}
                                  }
                            END {print tot_mem}' snmp_reply`
            # I can use N as a replacement for the current time
            rrdtool update target.rrd N:$total_mem
            # sleep until the next 300 seconds are full
            perl -e 'sleep 300 - time % 300'
        done # end of while loop
       Perl script (retrieves data from database and generates graphs and
       statistics)
        #!/usr/bin/perl -w
        # This script fetches data from target.rrd, creates a graph of memory
        # consumption on the target (Dual P3 Processor 1 GHz, 656 MB RAM)
        # call the RRD perl module
        use lib qw( /usr/local/rrdtool-1.0.41/lib/perl ../lib/perl );
        use RRDs;
        my $cur_time = time();                # set current time
        my $end_time = $cur_time - 86400;     # set end time to 24 hours ago
        my $start_time = $end_time - 2592000; # set start 30 days in the past
        # fetch average values from the RRD database between start and end time
        my ($start,$step,$ds_names,$data) =
            RRDs::fetch("target.rrd", "AVERAGE",
                        "-r", "600", "-s", "$start_time", "-e", "$end_time");
        # save fetched values in a 2-dimensional array
        my $rows = 0;
        my $columns = 0;
        my $time_variable = $start;
        foreach $line (@$data) {
          $vals[$rows][$columns] = $time_variable;
          $time_variable = $time_variable + $step;
          foreach $val (@$line) {
                  $vals[$rows][++$columns] = $val;}
          $rows++;
          $columns = 0;
        }
        my $tot_time = 0;
        my $count = 0;
        # save the values from the 2-dimensional into a 1-dimensional array
        for $i ( 0 .. $#vals ) {
            $tot_mem[$count] = $vals[$i][1];
            $count++;
        }
        my $tot_mem_sum = 0;
        # calculate the total of all values
        for $i ( 0 .. ($count-1) ) {
            $tot_mem_sum = $tot_mem_sum + $tot_mem[$i];
        }
        # calculate the average of the array
        my $tot_mem_ave = $tot_mem_sum/($count);
        # create the graph
        RRDs::graph ("/images/mem_$count.png",
                    "--title= Memory Usage",
                    "--vertical-label=Memory Consumption (MB)",
                    "--start=$start_time",
                    "--end=$end_time",
                    "--color=BACK#CCCCCC",
                    "--color=CANVAS#CCFFFF",
                    "--color=SHADEB#9999CC",
                    "--height=125",
                    "--upper-limit=656",
                    "--lower-limit=0",
                    "--rigid",
                    "--base=1024",
                    "DEF:tot_mem=target.rrd:mem:AVERAGE",
                    "CDEF:tot_mem_cor=tot_mem,0,671744,LIMIT,UN,0,tot_mem,IF,1024,/",
                    "CDEF:machine_mem=tot_mem,656,+,tot_mem,-",
                    "COMMENT:Memory Consumption between $start_time",
                    "COMMENT:    and $end_time                     ",
                    "HRULE:656#000000:Maximum Available Memory - 656 MB",
                    "AREA:machine_mem#CCFFFF:Memory Unused",
                    "AREA:tot_mem_cor#6699CC:Total memory consumed in MB");
        my $err=RRDs::error;
        if ($err) {print "problem generating the graph: $err\n";}
        # print the output
        print "Average memory consumption is ";
        printf "%5.2f",$tot_mem_ave/1024;
        print " MB. Graphical representation can be found at /images/mem_$count.png.";
AUTHOR
       Ketan Patel <k2pattu AT yahoo.com>

1.4.8                             2013-05-23                  RRD-BEGINNERS(1)