PERLREFTUT(1) Perl Programmers Reference Guide PERLREFTUT(1)
NAME
perlreftut - Mark's very short tutorial about references
DESCRIPTION
One of the most important new features in Perl 5 was the capability to
manage complicated data structures like multidimensional arrays and
nested hashes. To enable these, Perl 5 introduced a feature called
references, and using references is the key to managing complicated,
structured data in Perl. Unfortunately, there's a lot of funny syntax
to learn, and the main manual page can be hard to follow. The manual
is quite complete, and sometimes people find that a problem, because it
can be hard to tell what is important and what isn't.
Fortunately, you only need to know 10% of what's in the main page to
get 90% of the benefit. This page will show you that 10%.
Who Needs Complicated Data Structures?
One problem that comes up all the time is needing a hash whose values
are lists. Perl has hashes, of course, but the values have to be
scalars; they can't be lists.
Why would you want a hash of lists? Let's take a simple example: You
have a file of city and country names, like this:
Chicago, USA
Frankfurt, Germany
Berlin, Germany
Washington, USA
Helsinki, Finland
New York, USA
and you want to produce an output like this, with each country
mentioned once, and then an alphabetical list of the cities in that
country:
Finland: Helsinki.
Germany: Berlin, Frankfurt.
USA: Chicago, New York, Washington.
The natural way to do this is to have a hash whose keys are country
names. Associated with each country name key is a list of the cities
in that country. Each time you read a line of input, split it into a
country and a city, look up the list of cities already known to be in
that country, and append the new city to the list. When you're done
reading the input, iterate over the hash as usual, sorting each list of
cities before you print it out.
If hash values couldn't be lists, you lose. You'd probably have to
combine all the cities into a single string somehow, and then when time
came to write the output, you'd have to break the string into a list,
sort the list, and turn it back into a string. This is messy and
error-prone. And it's frustrating, because Perl already has perfectly
good lists that would solve the problem if only you could use them.
The Solution
By the time Perl 5 rolled around, we were already stuck with this
design: Hash values must be scalars. The solution to this is
references.
A reference is a scalar value that refers to an entire array or an
entire hash (or to just about anything else). Names are one kind of
reference that you're already familiar with. Think of the President of
the United States: a messy, inconvenient bag of blood and bones. But
to talk about him, or to represent him in a computer program, all you
need is the easy, convenient scalar string "Barack Obama".
References in Perl are like names for arrays and hashes. They're
Perl's private, internal names, so you can be sure they're unambiguous.
Unlike "Barack Obama", a reference only refers to one thing, and you
always know what it refers to. If you have a reference to an array,
you can recover the entire array from it. If you have a reference to a
hash, you can recover the entire hash. But the reference is still an
easy, compact scalar value.
You can't have a hash whose values are arrays; hash values can only be
scalars. We're stuck with that. But a single reference can refer to
an entire array, and references are scalars, so you can have a hash of
references to arrays, and it'll act a lot like a hash of arrays, and
it'll be just as useful as a hash of arrays.
We'll come back to this city-country problem later, after we've seen
some syntax for managing references.
Syntax
There are just two ways to make a reference, and just two ways to use
it once you have it.
Making References
Make Rule 1
If you put a "\" in front of a variable, you get a reference to that
variable.
$aref = \@array; # $aref now holds a reference to @array
$href = \%hash; # $href now holds a reference to %hash
$sref = \$scalar; # $sref now holds a reference to $scalar
Once the reference is stored in a variable like $aref or $href, you can
copy it or store it just the same as any other scalar value:
$xy = $aref; # $xy now holds a reference to @array
$p[3] = $href; # $p[3] now holds a reference to %hash
$z = $p[3]; # $z now holds a reference to %hash
These examples show how to make references to variables with names.
Sometimes you want to make an array or a hash that doesn't have a name.
This is analogous to the way you like to be able to use the string "\n"
or the number 80 without having to store it in a named variable first.
Make Rule 2
"[ ITEMS ]" makes a new, anonymous array, and returns a reference to
that array. "{ ITEMS }" makes a new, anonymous hash, and returns a
reference to that hash.
$aref = [ 1, "foo", undef, 13 ];
# $aref now holds a reference to an array
$href = { APR => 4, AUG => 8 };
# $href now holds a reference to a hash
The references you get from rule 2 are the same kind of references that
you get from rule 1:
# This:
$aref = [ 1, 2, 3 ];
# Does the same as this:
@array = (1, 2, 3);
$aref = \@array;
The first line is an abbreviation for the following two lines, except
that it doesn't create the superfluous array variable @array.
If you write just "[]", you get a new, empty anonymous array. If you
write just "{}", you get a new, empty anonymous hash.
Using References
What can you do with a reference once you have it? It's a scalar
value, and we've seen that you can store it as a scalar and get it back
again just like any scalar. There are just two more ways to use it:
Use Rule 1
You can always use an array reference, in curly braces, in place of the
name of an array. For example, "@{$aref}" instead of @array.
Here are some examples of that:
Arrays:
@a @{$aref} An array
reverse @a reverse @{$aref} Reverse the array
$a[3] ${$aref}[3] An element of the array
$a[3] = 17; ${$aref}[3] = 17 Assigning an element
On each line are two expressions that do the same thing. The left-hand
versions operate on the array @a. The right-hand versions operate on
the array that is referred to by $aref. Once they find the array
they're operating on, both versions do the same things to the arrays.
Using a hash reference is exactly the same:
%h %{$href} A hash
keys %h keys %{$href} Get the keys from the hash
$h{'red'} ${$href}{'red'} An element of the hash
$h{'red'} = 17 ${$href}{'red'} = 17 Assigning an element
Whatever you want to do with a reference, Use Rule 1 tells you how to
do it. You just write the Perl code that you would have written for
doing the same thing to a regular array or hash, and then replace the
array or hash name with "{$reference}". "How do I loop over an array
when all I have is a reference?" Well, to loop over an array, you
would write
for my $element (@array) {
...
}
so replace the array name, @array, with the reference:
for my $element (@{$aref}) {
...
}
"How do I print out the contents of a hash when all I have is a
reference?" First write the code for printing out a hash:
for my $key (keys %hash) {
print "$key => $hash{$key}\n";
}
And then replace the hash name with the reference:
for my $key (keys %{$href}) {
print "$key => ${$href}{$key}\n";
}
Use Rule 2
Use Rule 1 is all you really need, because it tells you how to do
absolutely everything you ever need to do with references. But the
most common thing to do with an array or a hash is to extract a single
element, and the Use Rule 1 notation is cumbersome. So there is an
abbreviation.
"${$aref}[3]" is too hard to read, so you can write "$aref->[3]"
instead.
"${$href}{red}" is too hard to read, so you can write "$href->{red}"
instead.
If $aref holds a reference to an array, then "$aref->[3]" is the fourth
element of the array. Don't confuse this with $aref[3], which is the
fourth element of a totally different array, one deceptively named
@aref. $aref and @aref are unrelated the same way that $item and @item
are.
Similarly, "$href->{'red'}" is part of the hash referred to by the
scalar variable $href, perhaps even one with no name. $href{'red'} is
part of the deceptively named %href hash. It's easy to forget to leave
out the "->", and if you do, you'll get bizarre results when your
program gets array and hash elements out of totally unexpected hashes
and arrays that weren't the ones you wanted to use.
An Example
Let's see a quick example of how all this is useful.
First, remember that "[1, 2, 3]" makes an anonymous array containing
"(1, 2, 3)", and gives you a reference to that array.
Now think about
@a = ( [1, 2, 3],
[4, 5, 6],
[7, 8, 9]
);
@a is an array with three elements, and each one is a reference to
another array.
$a[1] is one of these references. It refers to an array, the array
containing "(4, 5, 6)", and because it is a reference to an array, Use
Rule 2 says that we can write $a[1]->[2] to get the third element from
that array. $a[1]->[2] is the 6. Similarly, $a[0]->[1] is the 2.
What we have here is like a two-dimensional array; you can write
$a[ROW]->[COLUMN] to get or set the element in any row and any column
of the array.
The notation still looks a little cumbersome, so there's one more
abbreviation:
Arrow Rule
In between two subscripts, the arrow is optional.
Instead of $a[1]->[2], we can write $a[1][2]; it means the same thing.
Instead of "$a[0]->[1] = 23", we can write "$a[0][1] = 23"; it means
the same thing.
Now it really looks like two-dimensional arrays!
You can see why the arrows are important. Without them, we would have
had to write "${$a[1]}[2]" instead of $a[1][2]. For three-dimensional
arrays, they let us write $x[2][3][5] instead of the unreadable
"${${$x[2]}[3]}[5]".
Solution
Here's the answer to the problem I posed earlier, of reformatting a
file of city and country names.
1 my %table;
2 while (<>) {
3 chomp;
4 my ($city, $country) = split /, /;
5 $table{$country} = [] unless exists $table{$country};
6 push @{$table{$country}}, $city;
7 }
8 for my $country (sort keys %table) {
9 print "$country: ";
10 my @cities = @{$table{$country}};
11 print join ', ', sort @cities;
12 print ".\n";
13 }
The program has two pieces: Lines 2-7 read the input and build a data
structure, and lines 8-13 analyze the data and print out the report.
We're going to have a hash, %table, whose keys are country names, and
whose values are references to arrays of city names. The data
structure will look like this:
%table
+-------+---+
| | | +-----------+--------+
|Germany| *---->| Frankfurt | Berlin |
| | | +-----------+--------+
+-------+---+
| | | +----------+
|Finland| *---->| Helsinki |
| | | +----------+
+-------+---+
| | | +---------+------------+----------+
| USA | *---->| Chicago | Washington | New York |
| | | +---------+------------+----------+
+-------+---+
We'll look at output first. Supposing we already have this structure,
how do we print it out?
8 for my $country (sort keys %table) {
9 print "$country: ";
10 my @cities = @{$table{$country}};
11 print join ', ', sort @cities;
12 print ".\n";
13 }
%table is an ordinary hash, and we get a list of keys from it, sort the
keys, and loop over the keys as usual. The only use of references is
in line 10. $table{$country} looks up the key $country in the hash and
gets the value, which is a reference to an array of cities in that
country. Use Rule 1 says that we can recover the array by saying
"@{$table{$country}}". Line 10 is just like
@cities = @array;
except that the name "array" has been replaced by the reference
"{$table{$country}}". The "@" tells Perl to get the entire array.
Having gotten the list of cities, we sort it, join it, and print it out
as usual.
Lines 2-7 are responsible for building the structure in the first
place. Here they are again:
2 while (<>) {
3 chomp;
4 my ($city, $country) = split /, /;
5 $table{$country} = [] unless exists $table{$country};
6 push @{$table{$country}}, $city;
7 }
Lines 2-4 acquire a city and country name. Line 5 looks to see if the
country is already present as a key in the hash. If it's not, the
program uses the "[]" notation (Make Rule 2) to manufacture a new,
empty anonymous array of cities, and installs a reference to it into
the hash under the appropriate key.
Line 6 installs the city name into the appropriate array.
$table{$country} now holds a reference to the array of cities seen in
that country so far. Line 6 is exactly like
push @array, $city;
except that the name "array" has been replaced by the reference
"{$table{$country}}". The "push" adds a city name to the end of the
referred-to array.
There's one fine point I skipped. Line 5 is unnecessary, and we can
get rid of it.
2 while (<>) {
3 chomp;
4 my ($city, $country) = split /, /;
5 #### $table{$country} = [] unless exists $table{$country};
6 push @{$table{$country}}, $city;
7 }
If there's already an entry in %table for the current $country, then
nothing is different. Line 6 will locate the value in
$table{$country}, which is a reference to an array, and push $city into
the array. But what does it do when $country holds a key, say
"Greece", that is not yet in %table?
This is Perl, so it does the exact right thing. It sees that you want
to push "Athens" onto an array that doesn't exist, so it helpfully
makes a new, empty, anonymous array for you, installs it into %table,
and then pushes "Athens" onto it. This is called
autovivification--bringing things to life automatically. Perl saw that
the key wasn't in the hash, so it created a new hash entry
automatically. Perl saw that you wanted to use the hash value as an
array, so it created a new empty array and installed a reference to it
in the hash automatically. And as usual, Perl made the array one
element longer to hold the new city name.
The Rest
I promised to give you 90% of the benefit with 10% of the details, and
that means I left out 90% of the details. Now that you have an
overview of the important parts, it should be easier to read the
perlref manual page, which discusses 100% of the details.
Some of the highlights of perlref:
o You can make references to anything, including scalars, functions,
and other references.
o In Use Rule 1, you can omit the curly brackets whenever the thing
inside them is an atomic scalar variable like $aref. For example,
@$aref is the same as "@{$aref}", and $$aref[1] is the same as
"${$aref}[1]". If you're just starting out, you may want to adopt
the habit of always including the curly brackets.
o This doesn't copy the underlying array:
$aref2 = $aref1;
You get two references to the same array. If you modify
"$aref1->[23]" and then look at "$aref2->[23]" you'll see the
change.
To copy the array, use
$aref2 = [@{$aref1}];
This uses "[...]" notation to create a new anonymous array, and
$aref2 is assigned a reference to the new array. The new array is
initialized with the contents of the array referred to by $aref1.
Similarly, to copy an anonymous hash, you can use
$href2 = {%{$href1}};
o To see if a variable contains a reference, use the "ref" function.
It returns true if its argument is a reference. Actually it's a
little better than that: It returns "HASH" for hash references and
"ARRAY" for array references.
o If you try to use a reference like a string, you get strings like
ARRAY(0x80f5dec) or HASH(0x826afc0)
If you ever see a string that looks like this, you'll know you
printed out a reference by mistake.
A side effect of this representation is that you can use "eq" to
see if two references refer to the same thing. (But you should
usually use "==" instead because it's much faster.)
o You can use a string as if it were a reference. If you use the
string "foo" as an array reference, it's taken to be a reference to
the array @foo. This is called a symbolic reference. The
declaration "use strict 'refs'" disables this feature, which can
cause all sorts of trouble if you use it by accident.
You might prefer to go on to perllol instead of perlref; it discusses
lists of lists and multidimensional arrays in detail. After that, you
should move on to perldsc; it's a Data Structure Cookbook that shows
recipes for using and printing out arrays of hashes, hashes of arrays,
and other kinds of data.
Summary
Everyone needs compound data structures, and in Perl the way you get
them is with references. There are four important rules for managing
references: Two for making references and two for using them. Once you
know these rules you can do most of the important things you need to do
with references.
Credits
Author: Mark Jason Dominus, Plover Systems ("mjd-perl-ref+@plover.com")
This article originally appeared in The Perl Journal (
<http://www.tpj.com/> ) volume 3, #2. Reprinted with permission.
The original title was Understand References Today.
Distribution Conditions
Copyright 1998 The Perl Journal.
This documentation is free; you can redistribute it and/or modify it
under the same terms as Perl itself.
Irrespective of its distribution, all code examples in these files are
hereby placed into the public domain. You are permitted and encouraged
to use this code in your own programs for fun or for profit as you see
fit. A simple comment in the code giving credit would be courteous but
is not required.
perl v5.26.3 2018-03-23 PERLREFTUT(1)