PCREPARTIAL(3) Library Functions Manual PCREPARTIAL(3)
NAME
PCRE - Perl-compatible regular expressions
PARTIAL MATCHING IN PCRE
In normal use of PCRE, if the subject string that is passed to a match-
ing function matches as far as it goes, but is too short to match the
entire pattern, PCRE_ERROR_NOMATCH is returned. There are circumstances
where it might be helpful to distinguish this case from other cases in
which there is no match.
Consider, for example, an application where a human is required to type
in data for a field with specific formatting requirements. An example
might be a date in the form ddmmmyy, defined by this pattern:
^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$
If the application sees the user's keystrokes one by one, and can check
that what has been typed so far is potentially valid, it is able to
raise an error as soon as a mistake is made, by beeping and not
reflecting the character that has been typed, for example. This immedi-
ate feedback is likely to be a better user interface than a check that
is delayed until the entire string has been entered. Partial matching
can also be useful when the subject string is very long and is not all
available at once.
PCRE supports partial matching by means of the PCRE_PARTIAL_SOFT and
PCRE_PARTIAL_HARD options, which can be set when calling any of the
matching functions. For backwards compatibility, PCRE_PARTIAL is a syn-
onym for PCRE_PARTIAL_SOFT. The essential difference between the two
options is whether or not a partial match is preferred to an alterna-
tive complete match, though the details differ between the two types of
matching function. If both options are set, PCRE_PARTIAL_HARD takes
precedence.
If you want to use partial matching with just-in-time optimized code,
you must call pcre_study(), pcre16_study() or pcre32_study() with one
or both of these options:
PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE
PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE
PCRE_STUDY_JIT_COMPILE should also be set if you are going to run non-
partial matches on the same pattern. If the appropriate JIT study mode
has not been set for a match, the interpretive matching code is used.
Setting a partial matching option disables two of PCRE's standard opti-
mizations. PCRE remembers the last literal data unit in a pattern, and
abandons matching immediately if it is not present in the subject
string. This optimization cannot be used for a subject string that
might match only partially. If the pattern was studied, PCRE knows the
minimum length of a matching string, and does not bother to run the
matching function on shorter strings. This optimization is also dis-
abled for partial matching.
PARTIAL MATCHING USING pcre_exec() OR pcre[16|32]_exec()
A partial match occurs during a call to pcre_exec() or
pcre[16|32]_exec() when the end of the subject string is reached suc-
cessfully, but matching cannot continue because more characters are
needed. However, at least one character in the subject must have been
inspected. This character need not form part of the final matched
string; lookbehind assertions and the \K escape sequence provide ways
of inspecting characters before the start of a matched substring. The
requirement for inspecting at least one character exists because an
empty string can always be matched; without such a restriction there
would always be a partial match of an empty string at the end of the
subject.
If there are at least two slots in the offsets vector when a partial
match is returned, the first slot is set to the offset of the earliest
character that was inspected. For convenience, the second offset points
to the end of the subject so that a substring can easily be identified.
For the majority of patterns, the first offset identifies the start of
the partially matched string. However, for patterns that contain look-
behind assertions, or \K, or begin with \b or \B, earlier characters
have been inspected while carrying out the match. For example:
/(?<=abc)123/
This pattern matches "123", but only if it is preceded by "abc". If the
subject string is "xyzabc12", the offsets after a partial match are for
the substring "abc12", because all these characters are needed if
another match is tried with extra characters added to the subject.
What happens when a partial match is identified depends on which of the
two partial matching options are set.
PCRE_PARTIAL_SOFT WITH pcre_exec() OR pcre[16|32]_exec()
If PCRE_PARTIAL_SOFT is set when pcre_exec() or pcre[16|32]_exec()
identifies a partial match, the partial match is remembered, but match-
ing continues as normal, and other alternatives in the pattern are
tried. If no complete match can be found, PCRE_ERROR_PARTIAL is
returned instead of PCRE_ERROR_NOMATCH.
This option is "soft" because it prefers a complete match over a par-
tial match. All the various matching items in a pattern behave as if
the subject string is potentially complete. For example, \z, \Z, and $
match at the end of the subject, as normal, and for \b and \B the end
of the subject is treated as a non-alphanumeric.
If there is more than one partial match, the first one that was found
provides the data that is returned. Consider this pattern:
/123\w+X|dogY/
If this is matched against the subject string "abc123dog", both alter-
natives fail to match, but the end of the subject is reached during
matching, so PCRE_ERROR_PARTIAL is returned. The offsets are set to 3
and 9, identifying "123dog" as the first partial match that was found.
(In this example, there are two partial matches, because "dog" on its
own partially matches the second alternative.)
PCRE_PARTIAL_HARD WITH pcre_exec() OR pcre[16|32]_exec()
If PCRE_PARTIAL_HARD is set for pcre_exec() or pcre[16|32]_exec(),
PCRE_ERROR_PARTIAL is returned as soon as a partial match is found,
without continuing to search for possible complete matches. This option
is "hard" because it prefers an earlier partial match over a later com-
plete match. For this reason, the assumption is made that the end of
the supplied subject string may not be the true end of the available
data, and so, if \z, \Z, \b, \B, or $ are encountered at the end of the
subject, the result is PCRE_ERROR_PARTIAL, provided that at least one
character in the subject has been inspected.
Setting PCRE_PARTIAL_HARD also affects the way UTF-8 and UTF-16 subject
strings are checked for validity. Normally, an invalid sequence causes
the error PCRE_ERROR_BADUTF8 or PCRE_ERROR_BADUTF16. However, in the
special case of a truncated character at the end of the subject,
PCRE_ERROR_SHORTUTF8 or PCRE_ERROR_SHORTUTF16 is returned when
PCRE_PARTIAL_HARD is set.
Comparing hard and soft partial matching
The difference between the two partial matching options can be illus-
trated by a pattern such as:
/dog(sbody)?/
This matches either "dog" or "dogsbody", greedily (that is, it prefers
the longer string if possible). If it is matched against the string
"dog" with PCRE_PARTIAL_SOFT, it yields a complete match for "dog".
However, if PCRE_PARTIAL_HARD is set, the result is PCRE_ERROR_PARTIAL.
On the other hand, if the pattern is made ungreedy the result is dif-
ferent:
/dog(sbody)??/
In this case the result is always a complete match because that is
found first, and matching never continues after finding a complete
match. It might be easier to follow this explanation by thinking of the
two patterns like this:
/dog(sbody)?/ is the same as /dogsbody|dog/
/dog(sbody)??/ is the same as /dog|dogsbody/
The second pattern will never match "dogsbody", because it will always
find the shorter match first.
PARTIAL MATCHING USING pcre_dfa_exec() OR pcre[16|32]_dfa_exec()
The DFA functions move along the subject string character by character,
without backtracking, searching for all possible matches simultane-
ously. If the end of the subject is reached before the end of the pat-
tern, there is the possibility of a partial match, again provided that
at least one character has been inspected.
When PCRE_PARTIAL_SOFT is set, PCRE_ERROR_PARTIAL is returned only if
there have been no complete matches. Otherwise, the complete matches
are returned. However, if PCRE_PARTIAL_HARD is set, a partial match
takes precedence over any complete matches. The portion of the string
that was inspected when the longest partial match was found is set as
the first matching string, provided there are at least two slots in the
offsets vector.
Because the DFA functions always search for all possible matches, and
there is no difference between greedy and ungreedy repetition, their
behaviour is different from the standard functions when PCRE_PAR-
TIAL_HARD is set. Consider the string "dog" matched against the
ungreedy pattern shown above:
/dog(sbody)??/
Whereas the standard functions stop as soon as they find the complete
match for "dog", the DFA functions also find the partial match for
"dogsbody", and so return that when PCRE_PARTIAL_HARD is set.
PARTIAL MATCHING AND WORD BOUNDARIES
If a pattern ends with one of sequences \b or \B, which test for word
boundaries, partial matching with PCRE_PARTIAL_SOFT can give counter-
intuitive results. Consider this pattern:
/\bcat\b/
This matches "cat", provided there is a word boundary at either end. If
the subject string is "the cat", the comparison of the final "t" with a
following character cannot take place, so a partial match is found.
However, normal matching carries on, and \b matches at the end of the
subject when the last character is a letter, so a complete match is
found. The result, therefore, is not PCRE_ERROR_PARTIAL. Using
PCRE_PARTIAL_HARD in this case does yield PCRE_ERROR_PARTIAL, because
then the partial match takes precedence.
FORMERLY RESTRICTED PATTERNS
For releases of PCRE prior to 8.00, because of the way certain internal
optimizations were implemented in the pcre_exec() function, the
PCRE_PARTIAL option (predecessor of PCRE_PARTIAL_SOFT) could not be
used with all patterns. From release 8.00 onwards, the restrictions no
longer apply, and partial matching with can be requested for any pat-
tern.
Items that were formerly restricted were repeated single characters and
repeated metasequences. If PCRE_PARTIAL was set for a pattern that did
not conform to the restrictions, pcre_exec() returned the error code
PCRE_ERROR_BADPARTIAL (-13). This error code is no longer in use. The
PCRE_INFO_OKPARTIAL call to pcre_fullinfo() to find out if a compiled
pattern can be used for partial matching now always returns 1.
EXAMPLE OF PARTIAL MATCHING USING PCRETEST
If the escape sequence \P is present in a pcretest data line, the
PCRE_PARTIAL_SOFT option is used for the match. Here is a run of
pcretest that uses the date example quoted above:
re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
data> 25jun04\P
0: 25jun04
1: jun
data> 25dec3\P
Partial match: 23dec3
data> 3ju\P
Partial match: 3ju
data> 3juj\P
No match
data> j\P
No match
The first data string is matched completely, so pcretest shows the
matched substrings. The remaining four strings do not match the com-
plete pattern, but the first two are partial matches. Similar output is
obtained if DFA matching is used.
If the escape sequence \P is present more than once in a pcretest data
line, the PCRE_PARTIAL_HARD option is set for the match.
MULTI-SEGMENT MATCHING WITH pcre_dfa_exec() OR pcre[16|32]_dfa_exec()
When a partial match has been found using a DFA matching function, it
is possible to continue the match by providing additional subject data
and calling the function again with the same compiled regular expres-
sion, this time setting the PCRE_DFA_RESTART option. You must pass the
same working space as before, because this is where details of the pre-
vious partial match are stored. Here is an example using pcretest,
using the \R escape sequence to set the PCRE_DFA_RESTART option (\D
specifies the use of the DFA matching function):
re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
data> 23ja\P\D
Partial match: 23ja
data> n05\R\D
0: n05
The first call has "23ja" as the subject, and requests partial match-
ing; the second call has "n05" as the subject for the continued
(restarted) match. Notice that when the match is complete, only the
last part is shown; PCRE does not retain the previously partially-
matched string. It is up to the calling program to do that if it needs
to.
You can set the PCRE_PARTIAL_SOFT or PCRE_PARTIAL_HARD options with
PCRE_DFA_RESTART to continue partial matching over multiple segments.
This facility can be used to pass very long subject strings to the DFA
matching functions.
MULTI-SEGMENT MATCHING WITH pcre_exec() OR pcre[16|32]_exec()
From release 8.00, the standard matching functions can also be used to
do multi-segment matching. Unlike the DFA functions, it is not possible
to restart the previous match with a new segment of data. Instead, new
data must be added to the previous subject string, and the entire match
re-run, starting from the point where the partial match occurred. Ear-
lier data can be discarded.
It is best to use PCRE_PARTIAL_HARD in this situation, because it does
not treat the end of a segment as the end of the subject when matching
\z, \Z, \b, \B, and $. Consider an unanchored pattern that matches
dates:
re> /\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d/
data> The date is 23ja\P\P
Partial match: 23ja
At this stage, an application could discard the text preceding "23ja",
add on text from the next segment, and call the matching function
again. Unlike the DFA matching functions, the entire matching string
must always be available, and the complete matching process occurs for
each call, so more memory and more processing time is needed.
Note: If the pattern contains lookbehind assertions, or \K, or starts
with \b or \B, the string that is returned for a partial match includes
characters that precede the partially matched string itself, because
these must be retained when adding on more characters for a subsequent
matching attempt. However, in some cases you may need to retain even
earlier characters, as discussed in the next section.
ISSUES WITH MULTI-SEGMENT MATCHING
Certain types of pattern may give problems with multi-segment matching,
whichever matching function is used.
1. If the pattern contains a test for the beginning of a line, you need
to pass the PCRE_NOTBOL option when the subject string for any call
does start at the beginning of a line. There is also a PCRE_NOTEOL
option, but in practice when doing multi-segment matching you should be
using PCRE_PARTIAL_HARD, which includes the effect of PCRE_NOTEOL.
2. Lookbehind assertions that have already been obeyed are catered for
in the offsets that are returned for a partial match. However a lookbe-
hind assertion later in the pattern could require even earlier charac-
ters to be inspected. You can handle this case by using the
PCRE_INFO_MAXLOOKBEHIND option of the pcre_fullinfo() or
pcre[16|32]_fullinfo() functions to obtain the length of the largest
lookbehind in the pattern. This length is given in characters, not
bytes. If you always retain at least that many characters before the
partially matched string, all should be well. (Of course, near the
start of the subject, fewer characters may be present; in that case all
characters should be retained.)
3. Because a partial match must always contain at least one character,
what might be considered a partial match of an empty string actually
gives a "no match" result. For example:
re> /c(?<=abc)x/
data> ab\P
No match
If the next segment begins "cx", a match should be found, but this will
only happen if characters from the previous segment are retained. For
this reason, a "no match" result should be interpreted as "partial
match of an empty string" when the pattern contains lookbehinds.
4. Matching a subject string that is split into multiple segments may
not always produce exactly the same result as matching over one single
long string, especially when PCRE_PARTIAL_SOFT is used. The section
"Partial Matching and Word Boundaries" above describes an issue that
arises if the pattern ends with \b or \B. Another kind of difference
may occur when there are multiple matching possibilities, because (for
PCRE_PARTIAL_SOFT) a partial match result is given only when there are
no completed matches. This means that as soon as the shortest match has
been found, continuation to a new subject segment is no longer possi-
ble. Consider again this pcretest example:
re> /dog(sbody)?/
data> dogsb\P
0: dog
data> do\P\D
Partial match: do
data> gsb\R\P\D
0: g
data> dogsbody\D
0: dogsbody
1: dog
The first data line passes the string "dogsb" to a standard matching
function, setting the PCRE_PARTIAL_SOFT option. Although the string is
a partial match for "dogsbody", the result is not PCRE_ERROR_PARTIAL,
because the shorter string "dog" is a complete match. Similarly, when
the subject is presented to a DFA matching function in several parts
("do" and "gsb" being the first two) the match stops when "dog" has
been found, and it is not possible to continue. On the other hand, if
"dogsbody" is presented as a single string, a DFA matching function
finds both matches.
Because of these problems, it is best to use PCRE_PARTIAL_HARD when
matching multi-segment data. The example above then behaves differ-
ently:
re> /dog(sbody)?/
data> dogsb\P\P
Partial match: dogsb
data> do\P\D
Partial match: do
data> gsb\R\P\P\D
Partial match: gsb
5. Patterns that contain alternatives at the top level which do not all
start with the same pattern item may not work as expected when
PCRE_DFA_RESTART is used. For example, consider this pattern:
1234|3789
If the first part of the subject is "ABC123", a partial match of the
first alternative is found at offset 3. There is no partial match for
the second alternative, because such a match does not start at the same
point in the subject string. Attempting to continue with the string
"7890" does not yield a match because only those alternatives that
match at one point in the subject are remembered. The problem arises
because the start of the second alternative matches within the first
alternative. There is no problem with anchored patterns or patterns
such as:
1234|ABCD
where no string can be a partial match for both alternatives. This is
not a problem if a standard matching function is used, because the
entire match has to be rerun each time:
re> /1234|3789/
data> ABC123\P\P
Partial match: 123
data> 1237890
0: 3789
Of course, instead of using PCRE_DFA_RESTART, the same technique of re-
running the entire match can also be used with the DFA matching func-
tions. Another possibility is to work with two buffers. If a partial
match at offset n in the first buffer is followed by "no match" when
PCRE_DFA_RESTART is used on the second buffer, you can then try a new
match starting at offset n+1 in the first buffer.
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 24 June 2012
Copyright (c) 1997-2012 University of Cambridge.
PCRE 8.31 24 June 2012 PCREPARTIAL(3)