GIT-BUNDLE(1) Git Manual GIT-BUNDLE(1)
NAME
git-bundle - Move objects and refs by archive
SYNOPSIS
git bundle create <file> <git-rev-list-args>
git bundle verify <file>
git bundle list-heads <file> [<refname>...]
git bundle unbundle <file> [<refname>...]
DESCRIPTION
Some workflows require that one or more branches of development on one
machine be replicated on another machine, but the two machines cannot
be directly connected, and therefore the interactive Git protocols
(git, ssh, rsync, http) cannot be used. This command provides support
for git fetch and git pull to operate by packaging objects and
references in an archive at the originating machine, then importing
those into another repository using git fetch and git pull after moving
the archive by some means (e.g., by sneakernet). As no direct
connection between the repositories exists, the user must specify a
basis for the bundle that is held by the destination repository: the
bundle assumes that all objects in the basis are already in the
destination repository.
OPTIONS
create <file>
Used to create a bundle named file. This requires the
git-rev-list-args arguments to define the bundle contents.
verify <file>
Used to check that a bundle file is valid and will apply cleanly to
the current repository. This includes checks on the bundle format
itself as well as checking that the prerequisite commits exist and
are fully linked in the current repository. git bundle prints a
list of missing commits, if any, and exits with a non-zero status.
list-heads <file>
Lists the references defined in the bundle. If followed by a list
of references, only references matching those given are printed
out.
unbundle <file>
Passes the objects in the bundle to git index-pack for storage in
the repository, then prints the names of all defined references. If
a list of references is given, only references matching those in
the list are printed. This command is really plumbing, intended to
be called only by git fetch.
<git-rev-list-args>
A list of arguments, acceptable to git rev-parse and git rev-list
(and containing a named ref, see SPECIFYING REFERENCES below), that
specifies the specific objects and references to transport. For
example, master~10..master causes the current master reference to
be packaged along with all objects added since its 10th ancestor
commit. There is no explicit limit to the number of references and
objects that may be packaged.
[<refname>...]
A list of references used to limit the references reported as
available. This is principally of use to git fetch, which expects
to receive only those references asked for and not necessarily
everything in the pack (in this case, git bundle acts like git
fetch-pack).
SPECIFYING REFERENCES
git bundle will only package references that are shown by git show-ref:
this includes heads, tags, and remote heads. References such as
master~1 cannot be packaged, but are perfectly suitable for defining
the basis. More than one reference may be packaged, and more than one
basis can be specified. The objects packaged are those not contained in
the union of the given bases. Each basis can be specified explicitly
(e.g. ^master~10), or implicitly (e.g. master~10..master,
--since=10.days.ago master).
It is very important that the basis used be held by the destination. It
is okay to err on the side of caution, causing the bundle file to
contain objects already in the destination, as these are ignored when
unpacking at the destination.
EXAMPLE
Assume you want to transfer the history from a repository R1 on machine
A to another repository R2 on machine B. For whatever reason, direct
connection between A and B is not allowed, but we can move data from A
to B via some mechanism (CD, email, etc.). We want to update R2 with
development made on the branch master in R1.
To bootstrap the process, you can first create a bundle that does not
have any basis. You can use a tag to remember up to what commit you
last processed, in order to make it easy to later update the other
repository with an incremental bundle:
machineA$ cd R1
machineA$ git bundle create file.bundle master
machineA$ git tag -f lastR2bundle master
Then you transfer file.bundle to the target machine B. Because this
bundle does not require any existing object to be extracted, you can
create a new repository on machine B by cloning from it:
machineB$ git clone -b master /home/me/tmp/file.bundle R2
This will define a remote called "origin" in the resulting repository
that lets you fetch and pull from the bundle. The $GIT_DIR/config file
in R2 will have an entry like this:
[remote "origin"]
url = /home/me/tmp/file.bundle
fetch = refs/heads/*:refs/remotes/origin/*
To update the resulting mine.git repository, you can fetch or pull
after replacing the bundle stored at /home/me/tmp/file.bundle with
incremental updates.
After working some more in the original repository, you can create an
incremental bundle to update the other repository:
machineA$ cd R1
machineA$ git bundle create file.bundle lastR2bundle..master
machineA$ git tag -f lastR2bundle master
You then transfer the bundle to the other machine to replace
/home/me/tmp/file.bundle, and pull from it.
machineB$ cd R2
machineB$ git pull
If you know up to what commit the intended recipient repository should
have the necessary objects, you can use that knowledge to specify the
basis, giving a cut-off point to limit the revisions and objects that
go in the resulting bundle. The previous example used the lastR2bundle
tag for this purpose, but you can use any other options that you would
give to the git-log(1) command. Here are more examples:
You can use a tag that is present in both:
$ git bundle create mybundle v1.0.0..master
You can use a basis based on time:
$ git bundle create mybundle --since=10.days master
You can use the number of commits:
$ git bundle create mybundle -10 master
You can run git-bundle verify to see if you can extract from a bundle
that was created with a basis:
$ git bundle verify mybundle
This will list what commits you must have in order to extract from the
bundle and will error out if you do not have them.
A bundle from a recipient repository's point of view is just like a
regular repository which it fetches or pulls from. You can, for
example, map references when fetching:
$ git fetch mybundle master:localRef
You can also see what references it offers:
$ git ls-remote mybundle
GIT
Part of the git(1) suite
Git 1.8.3.1 07/30/2024 GIT-BUNDLE(1)