ext2(5) - phpMan

EXT4(5)                       File Formats Manual                      EXT4(5)
NAME
       ext2 - the second extended file system
       ext3 - the third extended file system
       ext4 - the fourth extended file system
DESCRIPTION
       The second, third, and fourth extended file systems, or ext2, ext3, and
       ext4 as they are commonly known, are Linux file systems that have  his-
       torically  been  the  default file system for many Linux distributions.
       They are general purpose file  systems  that  have  been  designed  for
       extensibility and backwards compatibility.  In particular, file systems
       previously intended for use with the ext2 and ext3 file systems can  be
       mounted  using  the  ext4 file system driver, and indeed in many modern
       Linux distributions, the ext4 file system driver has been configured to
       handle mount requests for ext2 and ext3 file systems.
RED HAT ENTERPRISE LINUX 8
       The  Ext4  file system is fully supported by Red Hat when using default
       mke2fs and mount options. In addition, the following non-default mke2fs
       features and mount options are also fully supported.
Non-default features:
       project
       quota
       mmp
Non-default mount options:
       bsddf|minixdf
       grpid|bsdgroups and nogrpid|sysvgroups
       resgid=n and resuid=n
       errors={continue|remount-ro|panic}
       commit=nrsec
       max_batch_time=usec
       min_batch_time=usec
       grpquota|noquota|quota|usrquota
       prjquota
       dax
       lazytime|nolazytime
       discard|nodiscard
       init_itable|noinit_itable
       jqfmt={vfsold|vfsv0|vfsv1}
       usrjquota=aquota.user|grpjquota=aquota.group
       For  more  information  on features and mount options, see the ext4 man
       page. Ext4 features and mount options not listed above may not be fully
       supported  by  Red  Hat.   If your workload requires a feature or mount
       option that is not fully in this Red Hat release, contact Red Hat  sup-
       port to evaluate it for inclusion in our supported list.
FILE SYSTEM FEATURES
       A  file  system formatted for ext2, ext3, or ext4 can have some collec-
       tion of the following file system feature flags enabled.  Some of these
       features  are  not  supported by all implementations of the ext2, ext3,
       and ext4 file system drivers, depending on Linux kernel version in use.
       On  other  operating  systems,  such as the GNU/HURD or FreeBSD, only a
       very restrictive set of file system features may be supported in  their
       implementations of ext2.
       64bit
              Enables  the  file  system  to be larger than 2^32 blocks.  This
              feature is set automatically, as needed, but it can be useful to
              specify this feature explicitly if the file system might need to
              be resized larger than 2^32 blocks, even if it was smaller  than
              that  threshold  when it was originally created.  Note that some
              older kernels and older versions of e2fsprogs will  not  support
              file systems with this ext4 feature enabled.
       bigalloc
              This  ext4  feature  enables clustered block allocation, so that
              the unit of allocation is a power of two number of blocks.  That
              is,  each  bit  in  the what had traditionally been known as the
              block allocation bitmap now indicates whether a  cluster  is  in
              use or not, where a cluster is by default composed of 16 blocks.
              This feature can decrease the time spent on doing block  alloca-
              tion  and  brings  smaller  fragmentation,  especially for large
              files.  The size can be specified using the mke2fs -C option.
              Warning: The bigalloc feature is still  under  development,  and
              may  not be fully supported with your kernel or may have various
              bugs.    Please   see   the   web   page   http://ext4.wiki.ker-
              nel.org/index.php/Bigalloc  for details.  May clash with delayed
              allocation (see nodelalloc mount option).
              This feature requires that the extent feature be enabled.
       casefold
              This ext4 feature provides file system level character  encoding
              support  for  directories  with  the casefold (+F) flag enabled.
              This feature is name-preserving  on  the  disk,  but  it  allows
              applications  to  lookup  for a file in the file system using an
              encoding equivalent version of the file name.
       dir_index
              Use hashed b-trees to speed up name lookups  in  large  directo-
              ries.   This feature is supported by ext3 and ext4 file systems,
              and is ignored by ext2 file systems.
       dir_nlink
              Normally, ext4 allows an inode to have no more than 65,000  hard
              links.   This  applies  to regular files as well as directories,
              which means that there can be no more than 64,998 subdirectories
              in  a  directory  (because  each of the '.' and '..' entries, as
              well as the directory entry for  the  directory  in  its  parent
              directory counts as a hard link).  This feature lifts this limit
              by causing ext4 to use a link count of 1 to  indicate  that  the
              number  of  hard links to a directory is not known when the link
              count might exceed the maximum count limit.
       ea_inode
              Normally, a file's extended attributes and  associated  metadata
              must  fit  within  the  inode or the inode's associated extended
              attribute block. This feature allows the value of each  extended
              attribute to be placed in the data blocks of a separate inode if
              necessary, increasing the  limit  on  the  size  and  number  of
              extended attributes per file.
       encrypt
              Enables  support for file-system level encryption of data blocks
              and file names.  The  inode  metadata  (timestamps,  file  size,
              user/group ownership, etc.) is not encrypted.
              This feature is most useful on file systems with multiple users,
              or where not all files should be encrypted.  In many use  cases,
              especially  on  single-user  systems,  encryption  at  the block
              device layer using dm-crypt may provide much better security.
       ext_attr
              This feature enables the use of extended attributes.  This  fea-
              ture is supported by ext2, ext3, and ext4.
       extent
              This  ext4  feature  allows the mapping of logical block numbers
              for a particular inode to physical blocks on the storage  device
              to  be  stored  using  an extent tree, which is a more efficient
              data structure than the traditional indirect block  scheme  used
              by  the  ext2 and ext3 file systems.  The use of the extent tree
              decreases metadata block overhead, improves file system  perfor-
              mance,  and  decreases  the  needed to run e2fsck(8) on the file
              system.  (Note: both extent and extents are  accepted  as  valid
              names  for  this  feature for historical/backwards compatibility
              reasons.)
       extra_isize
              This ext4 feature reserves a specific amount of  space  in  each
              inode  for  extended  metadata such as nanosecond timestamps and
              file creation time, even if the current  kernel  does  not  cur-
              rently  need  to reserve this much space.  Without this feature,
              the kernel will reserve the amount of space for features it cur-
              rently   needs,  and  the  rest  may  be  consumed  by  extended
              attributes.
              For this feature to be useful the inode size must be  256  bytes
              in size or larger.
       filetype
              This  feature  enables  the  storage of file type information in
              directory entries.  This feature is supported by ext2, ext3, and
              ext4.
       flex_bg
              This  ext4  feature allows the per-block group metadata (alloca-
              tion bitmaps and inode tables) to  be  placed  anywhere  on  the
              storage  media.   In  addition,  mke2fs will place the per-block
              group metadata together starting at the  first  block  group  of
              each  "flex_bg  group".    The  size of the flex_bg group can be
              specified using the -G option.
       has_journal
              Create a journal to ensure filesystem  consistency  even  across
              unclean shutdowns.  Setting the filesystem feature is equivalent
              to using the -j option with mke2fs or tune2fs.  This feature  is
              supported  by ext3 and ext4, and ignored by the ext2 file system
              driver.
       huge_file
              This ext4 feature allows files to be larger than 2 terabytes  in
              size.
       inline_data
              Allow  data  to  be  stored  in the inode and extended attribute
              area.
       journal_dev
              This feature is enabled on the superblock found on  an  external
              journal device.  The block size for the external journal must be
              the same as the file system which uses it.
              The external journal device can be used  by  a  file  system  by
              specifying  the  -J device=<external-device> option to mke2fs(8)
              or tune2fs(8).
       large_dir
              This feature increases the limit on  the  number  of  files  per
              directory  by  raising  the maximum size of directories and, for
              hashed b-tree directories (see dir_index), the maximum height of
              the hashed b-tree used to store the directory entries.
       large_file
              This  feature flag is set automatically by modern kernels when a
              file larger than 2 gigabytes is created.  Very old kernels could
              not  handle  large  files, so this feature flag was used to pro-
              hibit those kernels from mounting file systems that  they  could
              not understand.
       metadata_csum
              This  ext4  feature enables metadata checksumming.  This feature
              stores checksums for all of the filesystem metadata (superblock,
              group  descriptor  blocks, inode and block bitmaps, directories,
              and extent tree blocks).  The checksum algorithm  used  for  the
              metadata  blocks  is  different  than  the  one  used  for group
              descriptors with the uninit_bg feature.  These two features  are
              incompatible  and  metadata_csum  will  be  used  preferentially
              instead of uninit_bg.
       metadata_csum_seed
              This feature allows the filesystem to store the metadata  check-
              sum  seed  in  the superblock, which allows the administrator to
              change the UUID of a filesystem using the metadata_csum  feature
              while it is mounted.
       meta_bg
              This  ext4  feature  allows  file  systems to be resized on-line
              without explicitly needing to reserve space for  growth  in  the
              size  of  the block group descriptors.  This scheme is also used
              to resize file systems which are larger than 2^32 blocks.  It is
              not  recommended  that this feature be set when a file system is
              created, since this alternate method of storing the block  group
              descriptors  will  slow  down  the time needed to mount the file
              system, and newer kernels can automatically set this feature  as
              necessary when doing an online resize and no more reserved space
              is available in the resize inode.
       mmp
              This ext4 feature provides multiple mount protection (MMP).  MMP
              helps  to protect the filesystem from being multiply mounted and
              is useful in shared storage environments.
       project
              This ext4 feature provides project quota support. With this fea-
              ture,  the project ID of inode will be managed when the filesys-
              tem is mounted.
       quota
              Create quota inodes (inode #3 for userquota  and  inode  #4  for
              group quota) and set them in the superblock.  With this feature,
              the quotas will be enabled automatically when the filesystem  is
              mounted.
              Causes  the  quota files (i.e., user.quota and group.quota which
              existed in the older quota design) to be hidden inodes.
       resize_inode
              This file system feature indicates that space has been  reserved
              so  that  the block group descriptor table can be extended while
              resizing a mounted file system.  The online resize operation  is
              carried  out  by  the  kernel,  triggered  by  resize2fs(8).  By
              default mke2fs will attempt to reserve enough space so that  the
              filesystem may grow to 1024 times its initial size.  This can be
              changed using the resize extended option.
              This feature requires that  the  sparse_super  or  sparse_super2
              feature be enabled.
       sparse_super
              This  file  system  feature is set on all modern ext2, ext3, and
              ext4 file systems.  It  indicates  that  backup  copies  of  the
              superblock and block group descriptors are present only in a few
              block groups, not all of them.
       sparse_super2
              This feature indicates that there  will  only  be  at  most  two
              backup  superblocks  and  block  group  descriptors.   The block
              groups used to store the  backup  superblock(s)  and  blockgroup
              descriptor(s)  are  stored in the superblock, but typically, one
              will be located at the beginning of block group #1, and  one  in
              the last block group in the file system.  This feature is essen-
              tially a more extreme version of sparse_super and is designed to
              allow  a  much  larger percentage of the disk to have contiguous
              blocks available for data files.
       uninit_bg
              This ext4 file system feature indicates  that  the  block  group
              descriptors  will  be  protected using checksums, making it safe
              for mke2fs(8) to create a file system without  initializing  all
              of  the  block groups.  The kernel will keep a high watermark of
              unused inodes, and initialize inode tables  and  blocks  lazily.
              This  feature  speeds up the time to check the file system using
              e2fsck(8), and it also speeds up the time required for mke2fs(8)
              to create the file system.
       verity
              Enables  support  for  verity protected files.  Verity files are
              readonly, and their data is  transparently  verified  against  a
              Merkle  tree  hidden past the end of the file.  Using the Merkle
              tree's root hash, a verity file  can  be  efficiently  authenti-
              cated, independent of the file's size.
              This  feature  is most useful for authenticating important read-
              only files on read-write  file  systems.   If  the  file  system
              itself  is  read-only,  then using dm-verity to authenticate the
              entire block device may provide much better security.
MOUNT OPTIONS
       This section describes mount options which are specific to ext2,  ext3,
       and  ext4.   Other  generic  mount  options  may  be  used as well; see
       mount(8) for details.
Mount options for ext2
       The `ext2' filesystem is the standard Linux  filesystem.   Since  Linux
       2.5.46,  for  most  mount  options  the  default  is  determined by the
       filesystem superblock. Set them with tune2fs(8).
       acl|noacl
              Support POSIX Access Control Lists (or  not).   See  the  acl(5)
              manual page.
       bsddf|minixdf
              Set  the behavior for the statfs system call. The minixdf behav-
              ior is to return in the  f_blocks  field  the  total  number  of
              blocks of the filesystem, while the bsddf behavior (which is the
              default) is to subtract the overhead blocks  used  by  the  ext2
              filesystem and not available for file storage. Thus
              % mount /k -o minixdf; df /k; umount /k
              Filesystem  1024-blocks   Used  Available  Capacity  Mounted on
              /dev/sda6     2630655    86954   2412169      3%     /k
              % mount /k -o bsddf; df /k; umount /k
              Filesystem  1024-blocks  Used  Available  Capacity  Mounted on
              /dev/sda6     2543714      13   2412169      0%     /k
              (Note  that  this  example  shows  that one can add command line
              options to the options given in /etc/fstab.)
       check=none or nocheck
              No checking is done at mount time. This is the default. This  is
              fast.   It  is wise to invoke e2fsck(8) every now and then, e.g.
              at  boot  time.  The   non-default   behavior   is   unsupported
              (check=normal  and check=strict options have been removed). Note
              that these mount options don't have to be supported if ext4 ker-
              nel driver is used for ext2 and ext3 filesystems.
       debug  Print debugging info upon each (re)mount.
       errors={continue|remount-ro|panic}
              Define  the  behavior  when  an  error  is encountered.  (Either
              ignore errors and just mark the filesystem  erroneous  and  con-
              tinue,  or  remount  the filesystem read-only, or panic and halt
              the system.)  The default is set in the  filesystem  superblock,
              and can be changed using tune2fs(8).
       grpid|bsdgroups and nogrpid|sysvgroups
              These  options  define  what group id a newly created file gets.
              When grpid is set, it takes the group id  of  the  directory  in
              which  it is created; otherwise (the default) it takes the fsgid
              of the current process, unless the directory has the setgid  bit
              set,  in  which case it takes the gid from the parent directory,
              and also gets the setgid bit set if it is a directory itself.
       grpquota|noquota|quota|usrquota
              The usrquota (same as quota) mount  option  enables  user  quota
              support  on  the  filesystem. grpquota enables group quotas sup-
              port. You need the quota utilities to actually enable and manage
              the quota system.
       nouid32
              Disables  32-bit  UIDs  and  GIDs.  This is for interoperability
              with older kernels which only store and expect 16-bit values.
       oldalloc or orlov
              Use old allocator or Orlov allocator for new  inodes.  Orlov  is
              default.
       resgid=n and resuid=n
              The  ext2 filesystem reserves a certain percentage of the avail-
              able space (by default 5%, see mke2fs(8) and tune2fs(8)).  These
              options  determine  who  can use the reserved blocks.  (Roughly:
              whoever has the specified  uid,  or  belongs  to  the  specified
              group.)
       sb=n   Instead  of  using  the  normal  superblock,  use an alternative
              superblock specified by n.  This option is  normally  used  when
              the  primary  superblock  has  been  corrupted.  The location of
              backup superblocks is dependent on the  filesystem's  blocksize,
              the   number   of   blocks  per  group,  and  features  such  as
              sparse_super.
              Additional backup superblocks can be  determined  by  using  the
              mke2fs  program  using  the  -n  option  to  print out where the
              superblocks exist, supposing mke2fs is supplied  with  arguments
              that  are  consistent  with the filesystem's layout (e.g. block-
              size, blocks per group, sparse_super, etc.).
              The block number here uses 1 k units. Thus, if you want  to  use
              logical  block  32768  on  a  filesystem  with  4 k  blocks, use
              "sb=131072".
       user_xattr|nouser_xattr
              Support "user." extended attributes (or not).
Mount options for ext3
       The ext3 filesystem is a version of the ext2 filesystem which has  been
       enhanced with journaling.  It supports the same options as ext2 as well
       as the following additions:
       journal_dev=devnum/journal_path=path
              When the external  journal  device's  major/minor  numbers  have
              changed, these options allow the user to specify the new journal
              location.  The journal device is identified either  through  its
              new  major/minor numbers encoded in devnum, or via a path to the
              device.
       norecovery/noload
              Don't load the journal on mounting.  Note that if the filesystem
              was not unmounted cleanly, skipping the journal replay will lead
              to the filesystem containing inconsistencies that  can  lead  to
              any number of problems.
       data={journal|ordered|writeback}
              Specifies the journaling mode for file data.  Metadata is always
              journaled.  To use modes other than ordered on the root filesys-
              tem,  pass  the mode to the kernel as boot parameter, e.g. root-
              flags=data=journal.
              journal
                     All data is committed into the  journal  prior  to  being
                     written into the main filesystem.
              ordered
                     This  is  the  default mode.  All data is forced directly
                     out to the main file system prior to its  metadata  being
                     committed to the journal.
              writeback
                     Data ordering is not preserved - data may be written into
                     the main filesystem after its metadata has been committed
                     to  the  journal.   This  is  rumoured to be the highest-
                     throughput option.   It  guarantees  internal  filesystem
                     integrity,  however  it  can  allow old data to appear in
                     files after a crash and journal recovery.
       data_err=ignore
              Just print an error message if an error occurs in  a  file  data
              buffer in ordered mode.
       data_err=abort
              Abort  the  journal  if an error occurs in a file data buffer in
              ordered mode.
       barrier=0 / barrier=1
              This disables / enables the use of write  barriers  in  the  jbd
              code.   barrier=0  disables,  barrier=1  enables (default). This
              also requires an IO stack which can support barriers, and if jbd
              gets an error on a barrier write, it will disable barriers again
              with a warning.  Write barriers enforce proper on-disk  ordering
              of  journal  commits,  making volatile disk write caches safe to
              use, at some performance penalty.  If your  disks  are  battery-
              backed  in  one  way  or  another, disabling barriers may safely
              improve performance.
       commit=nrsec
              Start a journal commit every nrsec seconds.  The  default  value
              is 5 seconds.  Zero means default.
       user_xattr
              Enable Extended User Attributes. See the attr(5) manual page.
       jqfmt={vfsold|vfsv0|vfsv1}
              Apart  from  the  old quota system (as in ext2, jqfmt=vfsold aka
              version 1 quota) ext3 also supports journaled quotas (version  2
              quota).  jqfmt=vfsv0  or  jqfmt=vfsv1  enables journaled quotas.
              Journaled quotas have the advantage that even after a  crash  no
              quota  check  is  required. When the quota filesystem feature is
              enabled, journaled quotas are used automatically, and this mount
              option is ignored.
       usrjquota=aquota.user|grpjquota=aquota.group
              For  journaled  quotas  (jqfmt=vfsv0  or jqfmt=vfsv1), the mount
              options  usrjquota=aquota.user  and  grpjquota=aquota.group  are
              required  to tell the quota system which quota database files to
              use. When the quota filesystem  feature  is  enabled,  journaled
              quotas are used automatically, and this mount option is ignored.
Mount options for ext4
       The  ext4  filesystem is an advanced level of the ext3 filesystem which
       incorporates scalability and reliability  enhancements  for  supporting
       large filesystem.
       The  options  journal_dev, journal_path, norecovery, noload, data, com-
       mit, orlov, oldalloc, [no]user_xattr, [no]acl, bsddf,  minixdf,  debug,
       errors,   data_err,  grpid,  bsdgroups,  nogrpid,  sysvgroups,  resgid,
       resuid, sb, quota, noquota,  nouid32,  grpquota,  usrquota,  usrjquota,
       grpjquota, and jqfmt are backwardly compatible with ext3 or ext2.
       journal_checksum | nojournal_checksum
              The  journal_checksum option enables checksumming of the journal
              transactions.  This will allow the recovery code in  e2fsck  and
              the  kernel to detect corruption in the kernel. It is a compati-
              ble change and will be ignored by older kernels.
       journal_async_commit
              Commit block can be written to disk without waiting for descrip-
              tor  blocks.  If  enabled older kernels cannot mount the device.
              This will enable 'journal_checksum' internally.
       barrier=0 / barrier=1 / barrier / nobarrier
              These mount options have the same effect as in ext3.  The  mount
              options "barrier" and "nobarrier" are added for consistency with
              other ext4 mount options.
              The ext4 filesystem enables write barriers by default.
       inode_readahead_blks=n
              This tuning parameter controls the maximum number of inode table
              blocks that ext4's inode table readahead algorithm will pre-read
              into the buffer cache.  The value must be  a  power  of  2.  The
              default value is 32 blocks.
       stripe=n
              Number  of  filesystem  blocks  that mballoc will try to use for
              allocation size and alignment. For RAID5/6 systems  this  should
              be  the  number  of  data  disks * RAID chunk size in filesystem
              blocks.
       delalloc
              Deferring block allocation until write-out time.
       nodelalloc
              Disable delayed allocation. Blocks are allocated  when  data  is
              copied from user to page cache.
       max_batch_time=usec
              Maximum  amount of time ext4 should wait for additional filesys-
              tem operations to be batch together  with  a  synchronous  write
              operation. Since a synchronous write operation is going to force
              a commit and then a wait for the I/O complete, it  doesn't  cost
              much,  and  can  be  a  huge throughput win, we wait for a small
              amount of time to see if any other transactions can piggyback on
              the  synchronous  write. The algorithm used is designed to auto-
              matically tune for the speed  of  the  disk,  by  measuring  the
              amount of time (on average) that it takes to finish committing a
              transaction. Call this time the "commit time".  If the time that
              the  transaction  has been running is less than the commit time,
              ext4 will try sleeping for the commit time to see if other oper-
              ations  will  join the transaction. The commit time is capped by
              the max_batch_time, which defaults  to  15000 us  (15 ms).  This
              optimization   can   be   turned   off   entirely   by   setting
              max_batch_time to 0.
       min_batch_time=usec
              This parameter sets the commit time (as described above)  to  be
              at  least  min_batch_time.  It  defaults  to  zero microseconds.
              Increasing this parameter may improve the throughput  of  multi-
              threaded,  synchronous workloads on very fast disks, at the cost
              of increasing latency.
       journal_ioprio=prio
              The I/O priority (from 0 to 7, where 0 is the highest  priority)
              which  should be used for I/O operations submitted by kjournald2
              during a commit operation.  This  defaults  to  3,  which  is  a
              slightly higher priority than the default I/O priority.
       abort  Simulate  the effects of calling ext4_abort() for debugging pur-
              poses.  This is normally  used  while  remounting  a  filesystem
              which is already mounted.
       auto_da_alloc|noauto_da_alloc
              Many broken applications don't use fsync() when replacing exist-
              ing files via patterns such as
              fd = open("foo.new")/write(fd,...)/close(fd)/  rename("foo.new",
              "foo")
              or worse yet
              fd = open("foo", O_TRUNC)/write(fd,...)/close(fd).
              If  auto_da_alloc  is enabled, ext4 will detect the replace-via-
              rename and replace-via-truncate  patterns  and  force  that  any
              delayed  allocation  blocks  are allocated such that at the next
              journal commit, in  the  default  data=ordered  mode,  the  data
              blocks  of  the  new file are forced to disk before the rename()
              operation is committed.  This provides roughly the same level of
              guarantees  as  ext3,  and avoids the "zero-length" problem that
              can happen when a system crashes before the  delayed  allocation
              blocks are forced to disk.
       noinit_itable
              Do  not  initialize  any uninitialized inode table blocks in the
              background. This feature may be used  by  installation  CD's  so
              that  the  install  process can complete as quickly as possible;
              the inode table initialization process would  then  be  deferred
              until the next time the filesystem is mounted.
       init_itable=n
              The  lazy  itable init code will wait n times the number of mil-
              liseconds it took to zero out the previous block  group's  inode
              table. This minimizes the impact on system performance while the
              filesystem's inode table is being initialized.
       discard/nodiscard
              Controls whether ext4 should issue discard/TRIM commands to  the
              underlying  block  device when blocks are freed.  This is useful
              for SSD devices and sparse/thinly-provisioned LUNs,  but  it  is
              off by default until sufficient testing has been done.
       block_validity/noblock_validity
              This option enables/disables the in-kernel facility for tracking
              filesystem metadata blocks within internal data structures. This
              allows  multi-block  allocator  and  other  routines  to quickly
              locate extents which  might  overlap  with  filesystem  metadata
              blocks. This option is intended for debugging purposes and since
              it negatively affects the performance, it is off by default.
       dioread_lock/dioread_nolock
              Controls whether or not ext4 should use the DIO read locking. If
              the dioread_nolock option is specified ext4 will allocate unini-
              tialized extent before buffer write and convert  the  extent  to
              initialized  after IO completes.  This approach allows ext4 code
              to avoid using inode mutex, which improves scalability  on  high
              speed  storages. However this does not work with data journaling
              and dioread_nolock option will be ignored with  kernel  warning.
              Note that dioread_nolock code path is only used for extent-based
              files.  Because of the restrictions this options comprises it is
              off by default (e.g. dioread_lock).
       max_dir_size_kb=n
              This  limits  the size of the directories so that any attempt to
              expand them beyond the specified limit in kilobytes  will  cause
              an  ENOSPC  error. This is useful in memory-constrained environ-
              ments, where a very large directory can cause severe performance
              problems or even provoke the Out Of Memory killer. (For example,
              if there is only 512 MB memory available, a 176 MB directory may
              seriously cramp the system's style.)
       i_version
              Enable  64-bit  inode  version  support.  This  option is off by
              default.
       nombcache
              This option disables use of mbcache for extended attribute dedu-
              plication.  On  systems  where extended attributes are rarely or
              never shared between files, use  of  mbcache  for  deduplication
              adds unnecessary computational overhead.
       prjquota
              The  prjquota  mount option enables project quota support on the
              filesystem.  You need the quota utilities to actually enable and
              manage the quota system.  This mount option requires the project
              filesystem feature.
FILE ATTRIBUTES
       The ext2, ext3, and ext4 filesystems support setting the following file
       attributes on Linux systems using the chattr(1) utility:
       a - append only
       A - no atime updates
       d - no dump
       D - synchronous directory updates
       i - immutable
       S - synchronous updates
       u - undeletable
       In addition, the ext3 and ext4 filesystems support the following flag:
       j - data journaling
       Finally, the ext4 filesystem also supports the following flag:
       e - extents format
       For  descriptions  of  these  attribute  flags,  please  refer  to  the
       chattr(1) man page.
KERNEL SUPPORT
       This section lists the file system driver (e.g., ext2, ext3, ext4)  and
       upstream kernel version where a particular file system feature was sup-
       ported.  Note that in some cases the feature  was  present  in  earlier
       kernel  versions,  but  there were known, serious bugs.  In other cases
       the feature may still be considered in an experimental state.  Finally,
       note  that  some  distributions may have backported features into older
       kernels; in particular the kernel versions in certain "enterprise  dis-
       tributions" can be extremely misleading.
       filetype            ext2, 2.2.0
       sparse_super        ext2, 2.2.0
       large_file          ext2, 2.2.0
       has_journal         ext3, 2.4.15
       ext_attr            ext2/ext3, 2.6.0
       dir_index           ext3, 2.6.0
       resize_inode        ext3, 2.6.10 (online resizing)
       64bit               ext4, 2.6.28
       dir_nlink           ext4, 2.6.28
       extent              ext4, 2.6.28
       extra_isize         ext4, 2.6.28
       flex_bg             ext4, 2.6.28
       huge_file           ext4, 2.6.28
       meta_bg             ext4, 2.6.28
       uninit_bg           ext4, 2.6.28
       mmp                 ext4, 3.0
       bigalloc            ext4, 3.2
       quota               ext4, 3.6
       inline_data         ext4, 3.8
       sparse_super2       ext4, 3.16
       metadata_csum       ext4, 3.18
       encrypt             ext4, 4.1
       metadata_csum_seed  ext4, 4.4
       project             ext4, 4.5
       ea_inode            ext4, 4.13
       large_dir           ext4, 4.13
       casefold            ext4, 5.2
       verity              ext4, 5.4
SEE ALSO
       mke2fs(8),    mke2fs.conf(5),   e2fsck(8),   dumpe2fs(8),   tune2fs(8),
       debugfs(8), mount(8), chattr(1)
E2fsprogs version 1.45.6          March 2020                           EXT4(5)