DNSSEC-TRUST-ANCHORS.D(5) dnssec-trust-anchors.d DNSSEC-TRUST-ANCHORS.D(5)
NAME
dnssec-trust-anchors.d, systemd.positive, systemd.negative - DNSSEC
trust anchor configuration files
SYNOPSIS
/etc/dnssec-trust-anchors.d/*.positive
/run/dnssec-trust-anchors.d/*.positive
/usr/lib/dnssec-trust-anchors.d/*.positive
/etc/dnssec-trust-anchors.d/*.negative
/run/dnssec-trust-anchors.d/*.negative
/usr/lib/dnssec-trust-anchors.d/*.negative
DESCRIPTION
The DNSSEC trust anchor configuration files define positive and
negative trust anchors systemd-resolved.service(8) bases DNSSEC
integrity proofs on.
POSITIVE TRUST ANCHORS
Positive trust anchor configuration files contain DNSKEY and DS
resource record definitions to use as base for DNSSEC integrity proofs.
See RFC 4035, Section 4.4[1] for more information about DNSSEC trust
anchors.
Positive trust anchors are read from files with the suffix .positive
located in /etc/dnssec-trust-anchors.d/, /run/dnssec-trust-anchors.d/
and /usr/lib/dnssec-trust-anchors.d/. These directories are searched in
the specified order, and a trust anchor file of the same name in an
earlier path overrides a trust anchor files in a later path. To disable
a trust anchor file shipped in /usr/lib/dnssec-trust-anchors.d/ it is
sufficient to provide an identically-named file in
/etc/dnssec-trust-anchors.d/ or /run/dnssec-trust-anchors.d/ that is
either empty or a symlink to /dev/null ("masked").
Positive trust anchor files are simple text files resembling DNS zone
files, as documented in RFC 1035, Section 5[2]. One DS or DNSKEY
resource record may be listed per line. Empty lines and lines starting
with a semicolon (";") are ignored and considered comments. A DS
resource record is specified like in the following example:
. IN DS 19036 8 2 49aac11d7b6f6446702e54a1607371607a1a41855200fd2ce1cdde32f24e8fb5
The first word specifies the domain, use "." for the root domain. The
domain may be specified with or without trailing dot, which is
considered equivalent. The second word must be "IN" the third word
"DS". The following words specify the key tag, signature algorithm,
digest algorithm, followed by the hex-encoded key fingerprint. See RFC
4034, Section 5[3] for details about the precise syntax and meaning of
these fields.
Alternatively, DNSKEY resource records may be used to define trust
anchors, like in the following example:
. IN DNSKEY 257 3 8 AwEAAagAIKlVZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQbSEW0O8gcCjFFVQUTf6v58fLjwBd0YI0EzrAcQqBGCzh/RStIoO8g0NfnfL2MTJRkxoXbfDaUeVPQuYEhg37NZWAJQ9VnMVDxP/VHL496M/QZxkjf5/Efucp2gaDX6RS6CXpoY68LsvPVjR0ZSwzz1apAzvN9dlzEheX7ICJBBtuA6G3LQpzW5hOA2hzCTMjJPJ8LbqF6dsV6DoBQzgul0sGIcGOYl7OyQdXfZ57relSQageu+ipAdTTJ25AsRTAoub8ONGcLmqrAmRLKBP1dfwhYB4N7knNnulqQxA+Uk1ihz0=
The first word specifies the domain again, the second word must be
"IN", followed by "DNSKEY". The subsequent words encode the DNSKEY
flags, protocol and algorithm fields, followed by the key data encoded
in Base64. See RFC 4034, Section 2[4] for details about the precise
syntax and meaning of these fields.
If multiple DS or DNSKEY records are defined for the same domain
(possibly even in different trust anchor files), all keys are used and
are considered equivalent as base for DNSSEC proofs.
Note that systemd-resolved will automatically use a built-in trust
anchor key for the Internet root domain if no positive trust anchors
are defined for the root domain. In most cases it is hence unnecessary
to define an explicit key with trust anchor files. The built-in key is
disabled as soon as at least one trust anchor key for the root domain
is defined in trust anchor files.
It is generally recommended to encode trust anchors in DS resource
records, rather than DNSKEY resource records.
If a trust anchor specified via a DS record is found revoked it is
automatically removed from the trust anchor database for the runtime.
See RFC 5011[5] for details about revoked trust anchors. Note that
systemd-resolved will not update its trust anchor database from DNS
servers automatically. Instead, it is recommended to update the
resolver software or update the new trust anchor via adding in new
trust anchor files.
The current DNSSEC trust anchor for the Internet's root domain is
available at the IANA Trust Anchor and Keys[6] page.
NEGATIVE TRUST ANCHORS
Negative trust anchors define domains where DNSSEC validation shall be
turned off. Negative trust anchor files are found at the same location
as positive trust anchor files, and follow the same overriding rules.
They are text files with the .negative suffix. Empty lines and lines
whose first character is ";" are ignored. Each line specifies one
domain name which is the root of a DNS subtree where validation shall
be disabled.
Negative trust anchors are useful to support private DNS subtrees that
are not referenced from the Internet DNS hierarchy, and not signed.
RFC 7646[7] for details on negative trust anchors.
If no negative trust anchor files are configured a built-in set of
well-known private DNS zone domains is used as negative trust anchors.
It is also possibly to define per-interface negative trust anchors
using the DNSSECNegativeTrustAnchors= setting in systemd.network(5)
files.
SEE ALSO
systemd(1), systemd-resolved.service(8), resolved.conf(5),
systemd.network(5)
NOTES
1. RFC 4035, Section 4.4
https://tools.ietf.org/html/rfc4035#section-4.4
2. RFC 1035, Section 5
https://tools.ietf.org/html/rfc1035#section-5
3. RFC 4034, Section 5
https://tools.ietf.org/html/rfc4034#section-5
4. RFC 4034, Section 2
https://tools.ietf.org/html/rfc4034#section-2
5. RFC 5011
https://tools.ietf.org/html/rfc5011
6. IANA Trust Anchor and Keys
https://data.iana.org/root-anchors/root-anchors.xml
7. RFC 7646
https://tools.ietf.org/html/rfc7646
systemd 239 DNSSEC-TRUST-ANCHORS.D(5)